使用Mean Shift在3D中跟踪神经元轴突

Hongmin Cai, Xiaoyin Xu, Ju Lu, J. Lichtman, S. Yung, Stephen T. C. Wong
{"title":"使用Mean Shift在3D中跟踪神经元轴突","authors":"Hongmin Cai, Xiaoyin Xu, Ju Lu, J. Lichtman, S. Yung, Stephen T. C. Wong","doi":"10.1109/LSSA.2006.250405","DOIUrl":null,"url":null,"abstract":"Morphology is very important in help neuroscientists understand neuronal functions and connectivity of neurons. Using confocal microscopy researchers can acquire 3D images of neuronal axons in high resolution and study how axons innervate muscular fibers. To test different innervation models, researchers need to track every single axons and its branches in 3D. A robust segmentation and tracking method is needed to follow each axon in 3D. Challenges are that axons may appear touching each other in the image and make it difficult to segment. In addition, split and merge of axons require judicious image processing to correctly track axons in these cases. We present a 3-step segmentation and tracking algorithm to address these problems. Our proposed method includes nonlinear anisotropic diffusion for noise removal and edge enhancement, morphological operation for edge detection, and mean shift for tracking in three dimensions. The method can segment contacting objects and track the axons when they merge or split","PeriodicalId":360097,"journal":{"name":"2006 IEEE/NLM Life Science Systems and Applications Workshop","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Use Mean Shift to Track Neuronal Axons in 3D\",\"authors\":\"Hongmin Cai, Xiaoyin Xu, Ju Lu, J. Lichtman, S. Yung, Stephen T. C. Wong\",\"doi\":\"10.1109/LSSA.2006.250405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Morphology is very important in help neuroscientists understand neuronal functions and connectivity of neurons. Using confocal microscopy researchers can acquire 3D images of neuronal axons in high resolution and study how axons innervate muscular fibers. To test different innervation models, researchers need to track every single axons and its branches in 3D. A robust segmentation and tracking method is needed to follow each axon in 3D. Challenges are that axons may appear touching each other in the image and make it difficult to segment. In addition, split and merge of axons require judicious image processing to correctly track axons in these cases. We present a 3-step segmentation and tracking algorithm to address these problems. Our proposed method includes nonlinear anisotropic diffusion for noise removal and edge enhancement, morphological operation for edge detection, and mean shift for tracking in three dimensions. The method can segment contacting objects and track the axons when they merge or split\",\"PeriodicalId\":360097,\"journal\":{\"name\":\"2006 IEEE/NLM Life Science Systems and Applications Workshop\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE/NLM Life Science Systems and Applications Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LSSA.2006.250405\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE/NLM Life Science Systems and Applications Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LSSA.2006.250405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

形态学在帮助神经科学家了解神经元的功能和连通性方面非常重要。利用共聚焦显微镜可以获得神经元轴突的高分辨率三维图像,研究轴突如何支配肌肉纤维。为了测试不同的神经支配模型,研究人员需要在3D中跟踪每一个轴突及其分支。需要一种鲁棒的分割和跟踪方法来跟踪每个轴突。挑战在于轴突可能在图像中相互接触,使其难以分割。此外,在这种情况下,轴突的分裂和合并需要明智的图像处理来正确跟踪轴突。我们提出了一个三步分割和跟踪算法来解决这些问题。我们提出的方法包括非线性各向异性扩散用于噪声去除和边缘增强,形态学操作用于边缘检测,平均位移用于三维跟踪。该方法可以分割接触物体,并在轴突合并或分裂时对其进行跟踪
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Use Mean Shift to Track Neuronal Axons in 3D
Morphology is very important in help neuroscientists understand neuronal functions and connectivity of neurons. Using confocal microscopy researchers can acquire 3D images of neuronal axons in high resolution and study how axons innervate muscular fibers. To test different innervation models, researchers need to track every single axons and its branches in 3D. A robust segmentation and tracking method is needed to follow each axon in 3D. Challenges are that axons may appear touching each other in the image and make it difficult to segment. In addition, split and merge of axons require judicious image processing to correctly track axons in these cases. We present a 3-step segmentation and tracking algorithm to address these problems. Our proposed method includes nonlinear anisotropic diffusion for noise removal and edge enhancement, morphological operation for edge detection, and mean shift for tracking in three dimensions. The method can segment contacting objects and track the axons when they merge or split
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信