网络流在线分类

Mahbod Tavallaee, Wei Lu, A. Ghorbani
{"title":"网络流在线分类","authors":"Mahbod Tavallaee, Wei Lu, A. Ghorbani","doi":"10.1109/CNSR.2009.22","DOIUrl":null,"url":null,"abstract":"Online classification of network traffic is very challenging and still an issue to be solved due to the increase of new applications and traffic encryption. In this paper, we propose a hybrid mechanism for online classification of network traffic, in which we apply a signature-based method at the first level, and then we take advantage of a learning algorithm to classify the remaining unknown traffic using statistical features. Our evaluation with over 250 thousand flows collected over three consecutive hours on a large-scale ISP network shows promising results in detecting encrypted and tunneled applications compared to other existing methods.","PeriodicalId":103090,"journal":{"name":"2009 Seventh Annual Communication Networks and Services Research Conference","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Online Classification of Network Flows\",\"authors\":\"Mahbod Tavallaee, Wei Lu, A. Ghorbani\",\"doi\":\"10.1109/CNSR.2009.22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Online classification of network traffic is very challenging and still an issue to be solved due to the increase of new applications and traffic encryption. In this paper, we propose a hybrid mechanism for online classification of network traffic, in which we apply a signature-based method at the first level, and then we take advantage of a learning algorithm to classify the remaining unknown traffic using statistical features. Our evaluation with over 250 thousand flows collected over three consecutive hours on a large-scale ISP network shows promising results in detecting encrypted and tunneled applications compared to other existing methods.\",\"PeriodicalId\":103090,\"journal\":{\"name\":\"2009 Seventh Annual Communication Networks and Services Research Conference\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Seventh Annual Communication Networks and Services Research Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CNSR.2009.22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Seventh Annual Communication Networks and Services Research Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNSR.2009.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

由于新应用和流量加密的增加,网络流量的在线分类是一个非常具有挑战性的问题,也是一个有待解决的问题。本文提出了一种网络流量在线分类的混合机制,首先采用基于签名的方法,然后利用学习算法利用统计特征对剩余的未知流量进行分类。我们在一个大型ISP网络上连续三个小时收集了超过25万个流量,与其他现有方法相比,我们的评估显示,在检测加密和隧道应用程序方面,有很好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Online Classification of Network Flows
Online classification of network traffic is very challenging and still an issue to be solved due to the increase of new applications and traffic encryption. In this paper, we propose a hybrid mechanism for online classification of network traffic, in which we apply a signature-based method at the first level, and then we take advantage of a learning algorithm to classify the remaining unknown traffic using statistical features. Our evaluation with over 250 thousand flows collected over three consecutive hours on a large-scale ISP network shows promising results in detecting encrypted and tunneled applications compared to other existing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信