{"title":"基于近红外光学传感器的自适应人工神经网络含水率估计","authors":"Qin Li, K. Fjalestad","doi":"10.2118/195719-MS","DOIUrl":null,"url":null,"abstract":"\n In this paper, we present a water-cut estimator utilizing the function approximation capability of an artificial neural network (ANN). The inputs to the ANN are optical sensor readings in a Red-Eye water-cut meter, which features the near-infrared (NIR) absorption spectroscopy technology. The initial training of the ANNwas done with a data set acquired from our multi-phase flow-loop test facility, which was filled with live oil, water and gas. The test fluid stream was adjusted with good ranges of water-cut and gas-volume fractions which were supposed to cover the situations that can be foreseen in real production. However, clear discrepancies between the outputs of the ANN and the water-cut values from BS&W measurmentswere observedwhen the ANN was applied to actual production data measured by Red-Eye meters installed at two offshore wells. To address this issue and equip the ANN with self-adapting capability in real application, we propose a Bayesian approach to update the parameters of the ANN based on both initial flow-loop data and collected field data. The performance of the adapted ANN on both the data sets shows the effectiveness of the method.","PeriodicalId":113290,"journal":{"name":"Day 2 Wed, September 04, 2019","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Adaptive Artificial Neural Networks for Water-Cut Estimation Using Near-Infrared Optical Sensors\",\"authors\":\"Qin Li, K. Fjalestad\",\"doi\":\"10.2118/195719-MS\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this paper, we present a water-cut estimator utilizing the function approximation capability of an artificial neural network (ANN). The inputs to the ANN are optical sensor readings in a Red-Eye water-cut meter, which features the near-infrared (NIR) absorption spectroscopy technology. The initial training of the ANNwas done with a data set acquired from our multi-phase flow-loop test facility, which was filled with live oil, water and gas. The test fluid stream was adjusted with good ranges of water-cut and gas-volume fractions which were supposed to cover the situations that can be foreseen in real production. However, clear discrepancies between the outputs of the ANN and the water-cut values from BS&W measurmentswere observedwhen the ANN was applied to actual production data measured by Red-Eye meters installed at two offshore wells. To address this issue and equip the ANN with self-adapting capability in real application, we propose a Bayesian approach to update the parameters of the ANN based on both initial flow-loop data and collected field data. The performance of the adapted ANN on both the data sets shows the effectiveness of the method.\",\"PeriodicalId\":113290,\"journal\":{\"name\":\"Day 2 Wed, September 04, 2019\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Wed, September 04, 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/195719-MS\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Wed, September 04, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/195719-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adaptive Artificial Neural Networks for Water-Cut Estimation Using Near-Infrared Optical Sensors
In this paper, we present a water-cut estimator utilizing the function approximation capability of an artificial neural network (ANN). The inputs to the ANN are optical sensor readings in a Red-Eye water-cut meter, which features the near-infrared (NIR) absorption spectroscopy technology. The initial training of the ANNwas done with a data set acquired from our multi-phase flow-loop test facility, which was filled with live oil, water and gas. The test fluid stream was adjusted with good ranges of water-cut and gas-volume fractions which were supposed to cover the situations that can be foreseen in real production. However, clear discrepancies between the outputs of the ANN and the water-cut values from BS&W measurmentswere observedwhen the ANN was applied to actual production data measured by Red-Eye meters installed at two offshore wells. To address this issue and equip the ANN with self-adapting capability in real application, we propose a Bayesian approach to update the parameters of the ANN based on both initial flow-loop data and collected field data. The performance of the adapted ANN on both the data sets shows the effectiveness of the method.