从数据不平衡的角度预测客户利益和对联邦学习的贡献

Christoph Düsing, P. Cimiano
{"title":"从数据不平衡的角度预测客户利益和对联邦学习的贡献","authors":"Christoph Düsing, P. Cimiano","doi":"10.1145/3565010.3569063","DOIUrl":null,"url":null,"abstract":"Federated learning (FL) is a distributed learning paradigm that allows a cohort of clients to collaborate in jointly training a machine learning model. By design, FL assures data-privacy for clients involved, making it the perfect fit for a wide range of real-world applications requiring data privacy. Despite its great potential and conceptual guarantees, FL has been found to suffer from unbalanced data, causing the overall performance of the final model to decrease and the contribution of individual clients to the federated model to vary greatly. Assuming that imbalance does not only affect contribution but also the extent to which individual clients benefit from participating in FL, we investigate the predictive potential of data imbalance metrics on benefit and contribution. In particular, our approach comprises three phases: (1) we measure data imbalance of clients while maintaining data privacy using secure aggregation, (2) we measure how individual clients benefit from FL participation and how valuable they are for the cohort, and (3) we train classifiers to pairwisely rank clients regarding benefit and contribution. The resulting classifiers rank pairs of clients with an accuracy of 0.71 and 0.65 for benefit and contribution, respectively. Thus, our approach contributes towards providing an indication for the expected value for individual clients and the cohort prior to their participation.","PeriodicalId":325359,"journal":{"name":"Proceedings of the 3rd International Workshop on Distributed Machine Learning","volume":"37 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards predicting client benefit and contribution in federated learning from data imbalance\",\"authors\":\"Christoph Düsing, P. Cimiano\",\"doi\":\"10.1145/3565010.3569063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Federated learning (FL) is a distributed learning paradigm that allows a cohort of clients to collaborate in jointly training a machine learning model. By design, FL assures data-privacy for clients involved, making it the perfect fit for a wide range of real-world applications requiring data privacy. Despite its great potential and conceptual guarantees, FL has been found to suffer from unbalanced data, causing the overall performance of the final model to decrease and the contribution of individual clients to the federated model to vary greatly. Assuming that imbalance does not only affect contribution but also the extent to which individual clients benefit from participating in FL, we investigate the predictive potential of data imbalance metrics on benefit and contribution. In particular, our approach comprises three phases: (1) we measure data imbalance of clients while maintaining data privacy using secure aggregation, (2) we measure how individual clients benefit from FL participation and how valuable they are for the cohort, and (3) we train classifiers to pairwisely rank clients regarding benefit and contribution. The resulting classifiers rank pairs of clients with an accuracy of 0.71 and 0.65 for benefit and contribution, respectively. Thus, our approach contributes towards providing an indication for the expected value for individual clients and the cohort prior to their participation.\",\"PeriodicalId\":325359,\"journal\":{\"name\":\"Proceedings of the 3rd International Workshop on Distributed Machine Learning\",\"volume\":\"37 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 3rd International Workshop on Distributed Machine Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3565010.3569063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd International Workshop on Distributed Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3565010.3569063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

联邦学习(FL)是一种分布式学习范式,它允许一组客户端协作共同训练机器学习模型。通过设计,FL保证了所涉及客户的数据隐私,使其非常适合需要数据隐私的广泛现实应用程序。尽管具有巨大的潜力和概念上的保证,但人们发现FL受到数据不平衡的影响,导致最终模型的整体性能下降,各个客户端对联邦模型的贡献差异很大。假设不平衡不仅影响贡献,而且影响个人客户从参与FL中受益的程度,我们研究了数据不平衡指标对收益和贡献的预测潜力。特别是,我们的方法包括三个阶段:(1)我们测量客户的数据不平衡,同时使用安全聚合来维护数据隐私;(2)我们测量个人客户如何从FL参与中受益,以及他们对队列的价值;(3)我们训练分类器对客户的利益和贡献进行配对排序。所得到的分类器对客户的收益和贡献排序的准确率分别为0.71和0.65。因此,我们的方法有助于为个人客户和群体在参与之前提供预期价值的指示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards predicting client benefit and contribution in federated learning from data imbalance
Federated learning (FL) is a distributed learning paradigm that allows a cohort of clients to collaborate in jointly training a machine learning model. By design, FL assures data-privacy for clients involved, making it the perfect fit for a wide range of real-world applications requiring data privacy. Despite its great potential and conceptual guarantees, FL has been found to suffer from unbalanced data, causing the overall performance of the final model to decrease and the contribution of individual clients to the federated model to vary greatly. Assuming that imbalance does not only affect contribution but also the extent to which individual clients benefit from participating in FL, we investigate the predictive potential of data imbalance metrics on benefit and contribution. In particular, our approach comprises three phases: (1) we measure data imbalance of clients while maintaining data privacy using secure aggregation, (2) we measure how individual clients benefit from FL participation and how valuable they are for the cohort, and (3) we train classifiers to pairwisely rank clients regarding benefit and contribution. The resulting classifiers rank pairs of clients with an accuracy of 0.71 and 0.65 for benefit and contribution, respectively. Thus, our approach contributes towards providing an indication for the expected value for individual clients and the cohort prior to their participation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信