Md. Tanvir Hossain, S. Teng, Guojun Lu, M. Lackmann
{"title":"基于sift的图像配准技术的改进","authors":"Md. Tanvir Hossain, S. Teng, Guojun Lu, M. Lackmann","doi":"10.1109/DICTA.2010.39","DOIUrl":null,"url":null,"abstract":"Symmetric-SIFT is a recently proposed local technique used for registering multimodal images. It is based on a well-known general image registration technique named Scale Invariant Feature Transform (SIFT). Symmetric SIFT makes use of the gradient magnitude information at the image’s key regions to build the descriptors. In this paper, we highlight an issue with how the magnitude information is used in this process. This issue may result in similar descriptors being built to represent regions in images that are visually different. To address this issue, we have proposed two new strategies for weighting the descriptors. Our experimental results show that Symmetric-SIFT descriptors built using our proposed strategies can lead to better registration accuracy than descriptors built using the original Symmetric-SIFT technique. The issue highlighted and the two strategies proposed are also applicable to the general SIFT technique.","PeriodicalId":246460,"journal":{"name":"2010 International Conference on Digital Image Computing: Techniques and Applications","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"An Enhancement to SIFT-Based Techniques for Image Registration\",\"authors\":\"Md. Tanvir Hossain, S. Teng, Guojun Lu, M. Lackmann\",\"doi\":\"10.1109/DICTA.2010.39\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Symmetric-SIFT is a recently proposed local technique used for registering multimodal images. It is based on a well-known general image registration technique named Scale Invariant Feature Transform (SIFT). Symmetric SIFT makes use of the gradient magnitude information at the image’s key regions to build the descriptors. In this paper, we highlight an issue with how the magnitude information is used in this process. This issue may result in similar descriptors being built to represent regions in images that are visually different. To address this issue, we have proposed two new strategies for weighting the descriptors. Our experimental results show that Symmetric-SIFT descriptors built using our proposed strategies can lead to better registration accuracy than descriptors built using the original Symmetric-SIFT technique. The issue highlighted and the two strategies proposed are also applicable to the general SIFT technique.\",\"PeriodicalId\":246460,\"journal\":{\"name\":\"2010 International Conference on Digital Image Computing: Techniques and Applications\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Digital Image Computing: Techniques and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DICTA.2010.39\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Digital Image Computing: Techniques and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2010.39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Enhancement to SIFT-Based Techniques for Image Registration
Symmetric-SIFT is a recently proposed local technique used for registering multimodal images. It is based on a well-known general image registration technique named Scale Invariant Feature Transform (SIFT). Symmetric SIFT makes use of the gradient magnitude information at the image’s key regions to build the descriptors. In this paper, we highlight an issue with how the magnitude information is used in this process. This issue may result in similar descriptors being built to represent regions in images that are visually different. To address this issue, we have proposed two new strategies for weighting the descriptors. Our experimental results show that Symmetric-SIFT descriptors built using our proposed strategies can lead to better registration accuracy than descriptors built using the original Symmetric-SIFT technique. The issue highlighted and the two strategies proposed are also applicable to the general SIFT technique.