利用索引和值压缩提高多线程稀疏矩阵向量乘法的性能

K. Kourtis, G. Goumas, N. Koziris
{"title":"利用索引和值压缩提高多线程稀疏矩阵向量乘法的性能","authors":"K. Kourtis, G. Goumas, N. Koziris","doi":"10.1109/ICPP.2008.62","DOIUrl":null,"url":null,"abstract":"The sparse matrix-vector multiplication kernel exhibits limited potential for taking advantage of modern shared memory architectures due to its large memory bandwidth requirements. To decrease memory contention and improve the performance of the kernel we propose two compression schemes. The first, called CSR-DU, targets the reduction of the matrix structural data by applying coarse grain delta encoding for the column indices. The second scheme, called CSR-VI, targets the reduction of the numerical values using indirect indexing and can only be applied to matrices which contain a small number of unique values. Evaluation of both methods on a rich matrix set showed that they can significantly improve the performance of the multithreaded version of the kernel and achieve good scalability for large matrices.","PeriodicalId":388408,"journal":{"name":"2008 37th International Conference on Parallel Processing","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":"{\"title\":\"Improving the Performance of Multithreaded Sparse Matrix-Vector Multiplication Using Index and Value Compression\",\"authors\":\"K. Kourtis, G. Goumas, N. Koziris\",\"doi\":\"10.1109/ICPP.2008.62\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The sparse matrix-vector multiplication kernel exhibits limited potential for taking advantage of modern shared memory architectures due to its large memory bandwidth requirements. To decrease memory contention and improve the performance of the kernel we propose two compression schemes. The first, called CSR-DU, targets the reduction of the matrix structural data by applying coarse grain delta encoding for the column indices. The second scheme, called CSR-VI, targets the reduction of the numerical values using indirect indexing and can only be applied to matrices which contain a small number of unique values. Evaluation of both methods on a rich matrix set showed that they can significantly improve the performance of the multithreaded version of the kernel and achieve good scalability for large matrices.\",\"PeriodicalId\":388408,\"journal\":{\"name\":\"2008 37th International Conference on Parallel Processing\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"37\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 37th International Conference on Parallel Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPP.2008.62\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 37th International Conference on Parallel Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPP.2008.62","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

摘要

稀疏矩阵-向量乘法内核由于其巨大的内存带宽需求,在利用现代共享内存架构方面表现出有限的潜力。为了减少内存争用和提高内核性能,我们提出了两种压缩方案。第一个称为CSR-DU,目标是通过对列索引应用粗粒度增量编码来减少矩阵结构数据。第二个方案称为CSR-VI,目标是使用间接索引减少数值,并且只能应用于包含少量唯一值的矩阵。在一个丰富矩阵集上对这两种方法的评估表明,它们可以显著提高内核的多线程版本的性能,并在大矩阵下实现良好的可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving the Performance of Multithreaded Sparse Matrix-Vector Multiplication Using Index and Value Compression
The sparse matrix-vector multiplication kernel exhibits limited potential for taking advantage of modern shared memory architectures due to its large memory bandwidth requirements. To decrease memory contention and improve the performance of the kernel we propose two compression schemes. The first, called CSR-DU, targets the reduction of the matrix structural data by applying coarse grain delta encoding for the column indices. The second scheme, called CSR-VI, targets the reduction of the numerical values using indirect indexing and can only be applied to matrices which contain a small number of unique values. Evaluation of both methods on a rich matrix set showed that they can significantly improve the performance of the multithreaded version of the kernel and achieve good scalability for large matrices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信