基于自适应关联规则挖掘的web视频事件分类

Chengde Zhang, Xiao Wu, M. Shyu, Qiang Peng
{"title":"基于自适应关联规则挖掘的web视频事件分类","authors":"Chengde Zhang, Xiao Wu, M. Shyu, Qiang Peng","doi":"10.1109/IRI.2013.6642526","DOIUrl":null,"url":null,"abstract":"Due to the popularity and development of social networks and web video sites, we have witnessed an exponential growth in the volumes of web videos in the last decade. This prompts an urgent demand for efficiently grasping the major events. Nevertheless, the insufficient and noisy text information has made it difficult and challenging to mine the events based on the initial keywords and visual features. In this paper, we propose an adaptive semantic association rule mining method in the NDK (Near-Duplicate Keyframes) level to enrich the keyword information and to remove the words without any semantic relationship. Moreover, both textual and visual information are employed for event classification, targeting for bridging the gap between NDKs and the high-level semantic concepts. Experimental results on large scale web videos from YouTube demonstrate that our proposed method achieves good performance and outperforms the selected baseline methods.","PeriodicalId":418492,"journal":{"name":"2013 IEEE 14th International Conference on Information Reuse & Integration (IRI)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Adaptive association rule mining for web video event classification\",\"authors\":\"Chengde Zhang, Xiao Wu, M. Shyu, Qiang Peng\",\"doi\":\"10.1109/IRI.2013.6642526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the popularity and development of social networks and web video sites, we have witnessed an exponential growth in the volumes of web videos in the last decade. This prompts an urgent demand for efficiently grasping the major events. Nevertheless, the insufficient and noisy text information has made it difficult and challenging to mine the events based on the initial keywords and visual features. In this paper, we propose an adaptive semantic association rule mining method in the NDK (Near-Duplicate Keyframes) level to enrich the keyword information and to remove the words without any semantic relationship. Moreover, both textual and visual information are employed for event classification, targeting for bridging the gap between NDKs and the high-level semantic concepts. Experimental results on large scale web videos from YouTube demonstrate that our proposed method achieves good performance and outperforms the selected baseline methods.\",\"PeriodicalId\":418492,\"journal\":{\"name\":\"2013 IEEE 14th International Conference on Information Reuse & Integration (IRI)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 14th International Conference on Information Reuse & Integration (IRI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRI.2013.6642526\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 14th International Conference on Information Reuse & Integration (IRI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI.2013.6642526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

由于社交网络和网络视频网站的普及和发展,我们在过去十年中见证了网络视频数量的指数级增长。这就迫切需要有效地把握重大事件。然而,文本信息的不足和噪声给基于初始关键词和视觉特征的事件挖掘带来了困难和挑战。本文提出了一种基于NDK (Near-Duplicate Keyframes,近重复关键帧)的自适应语义关联规则挖掘方法,以丰富关键字信息,去除没有任何语义关系的词。此外,文本信息和视觉信息同时用于事件分类,旨在弥合ndk与高级语义概念之间的差距。在YouTube的大规模网络视频上的实验结果表明,我们提出的方法取得了良好的性能,并且优于所选的基线方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive association rule mining for web video event classification
Due to the popularity and development of social networks and web video sites, we have witnessed an exponential growth in the volumes of web videos in the last decade. This prompts an urgent demand for efficiently grasping the major events. Nevertheless, the insufficient and noisy text information has made it difficult and challenging to mine the events based on the initial keywords and visual features. In this paper, we propose an adaptive semantic association rule mining method in the NDK (Near-Duplicate Keyframes) level to enrich the keyword information and to remove the words without any semantic relationship. Moreover, both textual and visual information are employed for event classification, targeting for bridging the gap between NDKs and the high-level semantic concepts. Experimental results on large scale web videos from YouTube demonstrate that our proposed method achieves good performance and outperforms the selected baseline methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信