基于信息感知的2^n-树的超大多维体积数据的高效外核索引

Jusub Kim, J. JáJá
{"title":"基于信息感知的2^n-树的超大多维体积数据的高效外核索引","authors":"Jusub Kim, J. JáJá","doi":"10.1109/SSDBM.2007.15","DOIUrl":null,"url":null,"abstract":"We discuss a new efficient out-of-core multidimensional indexing structure, information-aware 2n-tree, for indexing very large multidimensional volumetric data. Building a series of (n-1)-Dimensional indexing structures on n-Dimensional data causes a scalability problem in the situation of continually growing resolution in every dimension. However, building a single n-Dimensional indexing structure can cause an indexing effectiveness problem compared to the former case. The information-aware 2n-tree is an effort to maximize the indexing structure efficiency by ensuring that the subdivision of space have as similar coherence as possible along each dimension. It is particularly useful when data distribution along each dimension constantly shows a different degree of coherence from each other dimension. Our preliminary results show that our new tree can achieve higher indexing structure efficiency than previous methods.","PeriodicalId":122925,"journal":{"name":"19th International Conference on Scientific and Statistical Database Management (SSDBM 2007)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Information-Aware 2^n-Tree for Efficient Out-of-Core Indexing of Very Large Multidimensional Volumetric Data\",\"authors\":\"Jusub Kim, J. JáJá\",\"doi\":\"10.1109/SSDBM.2007.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We discuss a new efficient out-of-core multidimensional indexing structure, information-aware 2n-tree, for indexing very large multidimensional volumetric data. Building a series of (n-1)-Dimensional indexing structures on n-Dimensional data causes a scalability problem in the situation of continually growing resolution in every dimension. However, building a single n-Dimensional indexing structure can cause an indexing effectiveness problem compared to the former case. The information-aware 2n-tree is an effort to maximize the indexing structure efficiency by ensuring that the subdivision of space have as similar coherence as possible along each dimension. It is particularly useful when data distribution along each dimension constantly shows a different degree of coherence from each other dimension. Our preliminary results show that our new tree can achieve higher indexing structure efficiency than previous methods.\",\"PeriodicalId\":122925,\"journal\":{\"name\":\"19th International Conference on Scientific and Statistical Database Management (SSDBM 2007)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"19th International Conference on Scientific and Statistical Database Management (SSDBM 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSDBM.2007.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"19th International Conference on Scientific and Statistical Database Management (SSDBM 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSDBM.2007.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们讨论了一种新的高效的核外多维索引结构——信息感知2n树,用于索引非常大的多维容量数据。在n维数据上构建一系列(n-1)维索引结构会导致在每个维度分辨率不断增长的情况下的可伸缩性问题。然而,与前一种情况相比,构建单个n维索引结构可能会导致索引效率问题。信息感知的2n树是通过确保空间的细分在每个维度上具有尽可能相似的一致性来最大化索引结构效率的一种努力。当沿着每个维度的数据分布不断地显示与其他维度的不同程度的一致性时,它特别有用。初步结果表明,新树的索引结构效率比以前的方法要高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Information-Aware 2^n-Tree for Efficient Out-of-Core Indexing of Very Large Multidimensional Volumetric Data
We discuss a new efficient out-of-core multidimensional indexing structure, information-aware 2n-tree, for indexing very large multidimensional volumetric data. Building a series of (n-1)-Dimensional indexing structures on n-Dimensional data causes a scalability problem in the situation of continually growing resolution in every dimension. However, building a single n-Dimensional indexing structure can cause an indexing effectiveness problem compared to the former case. The information-aware 2n-tree is an effort to maximize the indexing structure efficiency by ensuring that the subdivision of space have as similar coherence as possible along each dimension. It is particularly useful when data distribution along each dimension constantly shows a different degree of coherence from each other dimension. Our preliminary results show that our new tree can achieve higher indexing structure efficiency than previous methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信