代数因子分解与有理函数积分

B. Trager
{"title":"代数因子分解与有理函数积分","authors":"B. Trager","doi":"10.1145/800205.806338","DOIUrl":null,"url":null,"abstract":"This paper presents a new, simple, and efficient algorithm for factoring polynomials in several variables over an algebraic number field. The algorithm is then used iteratively, to construct the splitting field of a polynomial over the integers. Finally the factorization and splitting field algorithms are applied to the problem of determining the transcendental part of the integral of a rational function. In particular, a constructive procedure is given for finding the least degree extension field in which the integral can be expressed.","PeriodicalId":314618,"journal":{"name":"Symposium on Symbolic and Algebraic Manipulation","volume":"358 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1976-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"196","resultStr":"{\"title\":\"Algebraic factoring and rational function integration\",\"authors\":\"B. Trager\",\"doi\":\"10.1145/800205.806338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new, simple, and efficient algorithm for factoring polynomials in several variables over an algebraic number field. The algorithm is then used iteratively, to construct the splitting field of a polynomial over the integers. Finally the factorization and splitting field algorithms are applied to the problem of determining the transcendental part of the integral of a rational function. In particular, a constructive procedure is given for finding the least degree extension field in which the integral can be expressed.\",\"PeriodicalId\":314618,\"journal\":{\"name\":\"Symposium on Symbolic and Algebraic Manipulation\",\"volume\":\"358 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1976-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"196\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symposium on Symbolic and Algebraic Manipulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/800205.806338\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symposium on Symbolic and Algebraic Manipulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/800205.806338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 196

摘要

本文提出了一种新的、简单的、高效的代数数域上多变量多项式的因式分解算法。然后迭代地使用该算法来构造整数上多项式的分裂域。最后将分解域和分裂域算法应用于有理函数积分超越部分的确定问题。特别地,给出了求积分可表示的最小次扩展域的构造过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Algebraic factoring and rational function integration
This paper presents a new, simple, and efficient algorithm for factoring polynomials in several variables over an algebraic number field. The algorithm is then used iteratively, to construct the splitting field of a polynomial over the integers. Finally the factorization and splitting field algorithms are applied to the problem of determining the transcendental part of the integral of a rational function. In particular, a constructive procedure is given for finding the least degree extension field in which the integral can be expressed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信