局部定位系统中应用无气味卡尔曼滤波器的动态多径缓解

T. Nowak, Andreas Eidloth
{"title":"局部定位系统中应用无气味卡尔曼滤波器的动态多径缓解","authors":"T. Nowak, Andreas Eidloth","doi":"10.1017/S1759078711000274","DOIUrl":null,"url":null,"abstract":"Multipath propagation is still one of the major problems in local positioning systems today. Especially in indoor environments, the received signals are disturbed by blockages and reflections. This can lead to a large bias in the user's time-of-arrival (TOA) value. Thus multipath is the most dominant error source for positioning. In order to improve the positioning performance in multipath environments, recent multipath mitigation algorithms based upon the concept of sequential Bayesian estimation are used. The presented approach tries to overcome the multipath problem by estimating the channel dynamics, using Unscented Kalman Filters (UKF). Simulations on artificial and measured channels show the profit of the proposed estimator model.","PeriodicalId":324472,"journal":{"name":"The 3rd European Wireless Technology Conference","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Dynamic multipath mitigation applying unscented Kalman Filters in local positioning systems\",\"authors\":\"T. Nowak, Andreas Eidloth\",\"doi\":\"10.1017/S1759078711000274\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multipath propagation is still one of the major problems in local positioning systems today. Especially in indoor environments, the received signals are disturbed by blockages and reflections. This can lead to a large bias in the user's time-of-arrival (TOA) value. Thus multipath is the most dominant error source for positioning. In order to improve the positioning performance in multipath environments, recent multipath mitigation algorithms based upon the concept of sequential Bayesian estimation are used. The presented approach tries to overcome the multipath problem by estimating the channel dynamics, using Unscented Kalman Filters (UKF). Simulations on artificial and measured channels show the profit of the proposed estimator model.\",\"PeriodicalId\":324472,\"journal\":{\"name\":\"The 3rd European Wireless Technology Conference\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 3rd European Wireless Technology Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/S1759078711000274\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 3rd European Wireless Technology Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/S1759078711000274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

多径传播仍然是当前局部定位系统的主要问题之一。特别是在室内环境中,接收到的信号会受到障碍物和反射的干扰。这可能导致用户的到达时间(TOA)值出现较大偏差。因此,多路径是最主要的定位误差源。为了提高多径环境下的定位性能,采用了基于序列贝叶斯估计的多径缓解算法。提出的方法试图克服多径问题,通过估计信道动态,使用无气味卡尔曼滤波器(UKF)。对人工信道和实测信道的仿真表明了该估计器模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic multipath mitigation applying unscented Kalman Filters in local positioning systems
Multipath propagation is still one of the major problems in local positioning systems today. Especially in indoor environments, the received signals are disturbed by blockages and reflections. This can lead to a large bias in the user's time-of-arrival (TOA) value. Thus multipath is the most dominant error source for positioning. In order to improve the positioning performance in multipath environments, recent multipath mitigation algorithms based upon the concept of sequential Bayesian estimation are used. The presented approach tries to overcome the multipath problem by estimating the channel dynamics, using Unscented Kalman Filters (UKF). Simulations on artificial and measured channels show the profit of the proposed estimator model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信