M. Beekman, J. Gryko, H. F. Rubin, J. Kaduk, W. Wong-Ng, G. Nolas
{"title":"II型包合物的合成及输运性质","authors":"M. Beekman, J. Gryko, H. F. Rubin, J. Kaduk, W. Wong-Ng, G. Nolas","doi":"10.1109/ICT.2005.1519927","DOIUrl":null,"url":null,"abstract":"We present electrical resistivity and thermal conductivity for low alkali content NaSi/sub 36/, and compare it to the \"fully loaded\" Cs/sub 8/Na/sub 16/Si/sub 136/. Our results show that the electrical resistivities of the high and low alkali content materials differ greatly. Na/sub 1/Si/sub 136/ possesses a low thermal conductivity, similar in magnitude and temperature dependence to that of the \"empty\" clathrate Si/sub 136/. Extensive attempts at synthesizing Na/sub x/Ge/sub 136/ did not produce the clathrate phase in high enough yield for transport measurements, but instead an initially unidentified Na-Ge phase was prevalent. In order to clarify confusion in the literature, we propose a structural model for this novel phase, with resulting composition Na/sub 1-x/Ge/sub 3/. The potential of type II clathrates for thermoelectric applications is reviewed.","PeriodicalId":422400,"journal":{"name":"ICT 2005. 24th International Conference on Thermoelectrics, 2005.","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Synthesis and transport properties of type II clathrates\",\"authors\":\"M. Beekman, J. Gryko, H. F. Rubin, J. Kaduk, W. Wong-Ng, G. Nolas\",\"doi\":\"10.1109/ICT.2005.1519927\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present electrical resistivity and thermal conductivity for low alkali content NaSi/sub 36/, and compare it to the \\\"fully loaded\\\" Cs/sub 8/Na/sub 16/Si/sub 136/. Our results show that the electrical resistivities of the high and low alkali content materials differ greatly. Na/sub 1/Si/sub 136/ possesses a low thermal conductivity, similar in magnitude and temperature dependence to that of the \\\"empty\\\" clathrate Si/sub 136/. Extensive attempts at synthesizing Na/sub x/Ge/sub 136/ did not produce the clathrate phase in high enough yield for transport measurements, but instead an initially unidentified Na-Ge phase was prevalent. In order to clarify confusion in the literature, we propose a structural model for this novel phase, with resulting composition Na/sub 1-x/Ge/sub 3/. The potential of type II clathrates for thermoelectric applications is reviewed.\",\"PeriodicalId\":422400,\"journal\":{\"name\":\"ICT 2005. 24th International Conference on Thermoelectrics, 2005.\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICT 2005. 24th International Conference on Thermoelectrics, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICT.2005.1519927\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICT 2005. 24th International Conference on Thermoelectrics, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICT.2005.1519927","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Synthesis and transport properties of type II clathrates
We present electrical resistivity and thermal conductivity for low alkali content NaSi/sub 36/, and compare it to the "fully loaded" Cs/sub 8/Na/sub 16/Si/sub 136/. Our results show that the electrical resistivities of the high and low alkali content materials differ greatly. Na/sub 1/Si/sub 136/ possesses a low thermal conductivity, similar in magnitude and temperature dependence to that of the "empty" clathrate Si/sub 136/. Extensive attempts at synthesizing Na/sub x/Ge/sub 136/ did not produce the clathrate phase in high enough yield for transport measurements, but instead an initially unidentified Na-Ge phase was prevalent. In order to clarify confusion in the literature, we propose a structural model for this novel phase, with resulting composition Na/sub 1-x/Ge/sub 3/. The potential of type II clathrates for thermoelectric applications is reviewed.