用于目标分割和目标识别的时空CNN算法

Abraham Schultz, Csaba Rekeczky, I. Szatmári, T. Roska, L. O. Chua
{"title":"用于目标分割和目标识别的时空CNN算法","authors":"Abraham Schultz, Csaba Rekeczky, I. Szatmári, T. Roska, L. O. Chua","doi":"10.1109/CNNA.1998.685400","DOIUrl":null,"url":null,"abstract":"In this paper a spatio-temporal analogic cellular neural network (CNN) algorithm is designed for front-end filtering, segmentation and object recognition. First, a generalized segmentation strategy is presented based on various diffusion models. Both PDE and non-PDE related schemes are discussed and their VLSI complexity is analyzed. In classification (object recognition) a CNN implementation of the autowave metric, a \"nonlinear\" variant of the Hausdorff metric, is used. This approach turned out to be superior compared to some other classification methods. A number of tests have been completed within the so-called \"bubble/debris\" segmentation experiments using original and artificial gray-scale images.","PeriodicalId":171485,"journal":{"name":"1998 Fifth IEEE International Workshop on Cellular Neural Networks and their Applications. Proceedings (Cat. No.98TH8359)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Spatio-temporal CNN algorithm for object segmentation and object recognition\",\"authors\":\"Abraham Schultz, Csaba Rekeczky, I. Szatmári, T. Roska, L. O. Chua\",\"doi\":\"10.1109/CNNA.1998.685400\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper a spatio-temporal analogic cellular neural network (CNN) algorithm is designed for front-end filtering, segmentation and object recognition. First, a generalized segmentation strategy is presented based on various diffusion models. Both PDE and non-PDE related schemes are discussed and their VLSI complexity is analyzed. In classification (object recognition) a CNN implementation of the autowave metric, a \\\"nonlinear\\\" variant of the Hausdorff metric, is used. This approach turned out to be superior compared to some other classification methods. A number of tests have been completed within the so-called \\\"bubble/debris\\\" segmentation experiments using original and artificial gray-scale images.\",\"PeriodicalId\":171485,\"journal\":{\"name\":\"1998 Fifth IEEE International Workshop on Cellular Neural Networks and their Applications. Proceedings (Cat. No.98TH8359)\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1998 Fifth IEEE International Workshop on Cellular Neural Networks and their Applications. Proceedings (Cat. No.98TH8359)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CNNA.1998.685400\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1998 Fifth IEEE International Workshop on Cellular Neural Networks and their Applications. Proceedings (Cat. No.98TH8359)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNNA.1998.685400","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

本文设计了一种用于前端滤波、分割和目标识别的时空模拟细胞神经网络(CNN)算法。首先,提出了一种基于不同扩散模型的广义分割策略。讨论了PDE和非PDE相关方案,并分析了它们的VLSI复杂度。在分类(目标识别)中,使用了自动波度量(Hausdorff度量的“非线性”变体)的CNN实现。与其他分类方法相比,该方法具有明显的优越性。在使用原始和人工灰度图像的所谓“气泡/碎片”分割实验中完成了许多测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatio-temporal CNN algorithm for object segmentation and object recognition
In this paper a spatio-temporal analogic cellular neural network (CNN) algorithm is designed for front-end filtering, segmentation and object recognition. First, a generalized segmentation strategy is presented based on various diffusion models. Both PDE and non-PDE related schemes are discussed and their VLSI complexity is analyzed. In classification (object recognition) a CNN implementation of the autowave metric, a "nonlinear" variant of the Hausdorff metric, is used. This approach turned out to be superior compared to some other classification methods. A number of tests have been completed within the so-called "bubble/debris" segmentation experiments using original and artificial gray-scale images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信