{"title":"利用CGAN模型扩展遇见目标图像训练集","authors":"Ruolan Zhang, M. Furusho","doi":"10.5220/0007676803270332","DOIUrl":null,"url":null,"abstract":"A fully capable unmanned ship navigation requires full autonomous decision-making, large-scale decision model training data to answer for these conditions is essential. However, it is difficult to obtain enough scenes training data in a real sea navigation environment. In response to possible emergency situations even no shore-station support, this paper proposes a method using conditional generative adversarial networks (CGAN) to generate the most executable large-scale target ships image set, which can be used to training various sea conditions autonomous decision-making model. In practice, most of the current research on unmanned ships are based onshore remote control or monitoring. Nonetheless, in some extremely special circumstances, such as communication interruption, or if the ship cannot be guided or remotely controlled in real time on the shore, the unmanned ship must make an appropriate decision and form new plans according to the encounter targets and the whole current situation. The CGAN model is a novel means to generate the target ships to construct the whole encounter sea scenes situation. The generated targets training image set can be used to train decision models, and explore a new way to approach large-scale, fully autonomous navigation decisions.","PeriodicalId":218840,"journal":{"name":"International Conference on Vehicle Technology and Intelligent Transport Systems","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Using the CGAN Model Extend Encounter Targets Image Training Set\",\"authors\":\"Ruolan Zhang, M. Furusho\",\"doi\":\"10.5220/0007676803270332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A fully capable unmanned ship navigation requires full autonomous decision-making, large-scale decision model training data to answer for these conditions is essential. However, it is difficult to obtain enough scenes training data in a real sea navigation environment. In response to possible emergency situations even no shore-station support, this paper proposes a method using conditional generative adversarial networks (CGAN) to generate the most executable large-scale target ships image set, which can be used to training various sea conditions autonomous decision-making model. In practice, most of the current research on unmanned ships are based onshore remote control or monitoring. Nonetheless, in some extremely special circumstances, such as communication interruption, or if the ship cannot be guided or remotely controlled in real time on the shore, the unmanned ship must make an appropriate decision and form new plans according to the encounter targets and the whole current situation. The CGAN model is a novel means to generate the target ships to construct the whole encounter sea scenes situation. The generated targets training image set can be used to train decision models, and explore a new way to approach large-scale, fully autonomous navigation decisions.\",\"PeriodicalId\":218840,\"journal\":{\"name\":\"International Conference on Vehicle Technology and Intelligent Transport Systems\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Vehicle Technology and Intelligent Transport Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0007676803270332\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Vehicle Technology and Intelligent Transport Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0007676803270332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Using the CGAN Model Extend Encounter Targets Image Training Set
A fully capable unmanned ship navigation requires full autonomous decision-making, large-scale decision model training data to answer for these conditions is essential. However, it is difficult to obtain enough scenes training data in a real sea navigation environment. In response to possible emergency situations even no shore-station support, this paper proposes a method using conditional generative adversarial networks (CGAN) to generate the most executable large-scale target ships image set, which can be used to training various sea conditions autonomous decision-making model. In practice, most of the current research on unmanned ships are based onshore remote control or monitoring. Nonetheless, in some extremely special circumstances, such as communication interruption, or if the ship cannot be guided or remotely controlled in real time on the shore, the unmanned ship must make an appropriate decision and form new plans according to the encounter targets and the whole current situation. The CGAN model is a novel means to generate the target ships to construct the whole encounter sea scenes situation. The generated targets training image set can be used to train decision models, and explore a new way to approach large-scale, fully autonomous navigation decisions.