寻找隐藏路径:全对最短路径的时间界限

David R Karger, D. Koller, S. Phillips
{"title":"寻找隐藏路径:全对最短路径的时间界限","authors":"David R Karger, D. Koller, S. Phillips","doi":"10.1109/SFCS.1991.185419","DOIUrl":null,"url":null,"abstract":"The all-pairs shortest paths problem in weighted graphs is investigated. An algorithm called the hidden paths algorithm, which finds these paths in time O(m*+n n/sup 2/ log n), where m* is the number of edges participating in shortest paths, is presented. It is argued that m* is likely to be small in practice, since m*=O(n log n) with high probability for many probability distributions on edge weights. An Omega (mn) lower bound on the running time of any path-comparison-based algorithm for the all-pairs shortest paths problem is proved.<<ETX>>","PeriodicalId":320781,"journal":{"name":"[1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science","volume":"120 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"143","resultStr":"{\"title\":\"Finding the hidden path: time bounds for all-pairs shortest paths\",\"authors\":\"David R Karger, D. Koller, S. Phillips\",\"doi\":\"10.1109/SFCS.1991.185419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The all-pairs shortest paths problem in weighted graphs is investigated. An algorithm called the hidden paths algorithm, which finds these paths in time O(m*+n n/sup 2/ log n), where m* is the number of edges participating in shortest paths, is presented. It is argued that m* is likely to be small in practice, since m*=O(n log n) with high probability for many probability distributions on edge weights. An Omega (mn) lower bound on the running time of any path-comparison-based algorithm for the all-pairs shortest paths problem is proved.<<ETX>>\",\"PeriodicalId\":320781,\"journal\":{\"name\":\"[1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science\",\"volume\":\"120 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"143\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SFCS.1991.185419\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1991.185419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 143

摘要

研究了加权图中的全对最短路径问题。提出了一种隐路径算法,该算法在O(m*+n n/sup 2/ log n)时间内找到这些路径,其中m*为最短路径中参与的边数。有人认为m*在实践中可能很小,因为m*=O(n log n)对于许多边权的概率分布具有高概率。证明了对于全对最短路径问题,任何基于路径比较的算法的运行时间的Omega (mn)下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finding the hidden path: time bounds for all-pairs shortest paths
The all-pairs shortest paths problem in weighted graphs is investigated. An algorithm called the hidden paths algorithm, which finds these paths in time O(m*+n n/sup 2/ log n), where m* is the number of edges participating in shortest paths, is presented. It is argued that m* is likely to be small in practice, since m*=O(n log n) with high probability for many probability distributions on edge weights. An Omega (mn) lower bound on the running time of any path-comparison-based algorithm for the all-pairs shortest paths problem is proved.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信