基于b样条高斯过程回归的超声波疲劳裂纹长度估计方法

Rui Wang
{"title":"基于b样条高斯过程回归的超声波疲劳裂纹长度估计方法","authors":"Rui Wang","doi":"10.1109/PHM-Nanjing52125.2021.9612894","DOIUrl":null,"url":null,"abstract":"The diagnosis and prognosis of fatigue cracks, which greatly influence the long-term durability of structures, is an important issue for structural health monitoring (SHM). This paper presents a study on the estimation of fatigue crack length using ultrasonic wave data. The measured signal is first denoised and truncated to extract the informative period of the signal. If a crack is detected, features are extracted to represent the distortion of the signals while reducing the influence of noise with a B-spline based method. Gaussian process regression obtained from an integration of mean and covariance functions is used for the estimation of the crack length. Real-world experiments validates the effectiveness of the proposed method.","PeriodicalId":436428,"journal":{"name":"2021 Global Reliability and Prognostics and Health Management (PHM-Nanjing)","volume":"125 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A B-Spline Based Gaussian Process Regression Approach for Fatigue Crack Length Estimation Using Ultrasonic Wave Data\",\"authors\":\"Rui Wang\",\"doi\":\"10.1109/PHM-Nanjing52125.2021.9612894\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The diagnosis and prognosis of fatigue cracks, which greatly influence the long-term durability of structures, is an important issue for structural health monitoring (SHM). This paper presents a study on the estimation of fatigue crack length using ultrasonic wave data. The measured signal is first denoised and truncated to extract the informative period of the signal. If a crack is detected, features are extracted to represent the distortion of the signals while reducing the influence of noise with a B-spline based method. Gaussian process regression obtained from an integration of mean and covariance functions is used for the estimation of the crack length. Real-world experiments validates the effectiveness of the proposed method.\",\"PeriodicalId\":436428,\"journal\":{\"name\":\"2021 Global Reliability and Prognostics and Health Management (PHM-Nanjing)\",\"volume\":\"125 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Global Reliability and Prognostics and Health Management (PHM-Nanjing)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PHM-Nanjing52125.2021.9612894\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Global Reliability and Prognostics and Health Management (PHM-Nanjing)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PHM-Nanjing52125.2021.9612894","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

疲劳裂纹的诊断和预测是结构健康监测的一个重要问题,它对结构的长期耐久性有很大的影响。本文研究了利用超声波数据估计疲劳裂纹长度的方法。首先对测量信号进行去噪和截断以提取信号的信息周期。如果检测到裂纹,则提取特征来表示信号的畸变,同时使用基于b样条的方法降低噪声的影响。利用均值函数和协方差函数的积分得到的高斯过程回归来估计裂纹长度。实际实验验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A B-Spline Based Gaussian Process Regression Approach for Fatigue Crack Length Estimation Using Ultrasonic Wave Data
The diagnosis and prognosis of fatigue cracks, which greatly influence the long-term durability of structures, is an important issue for structural health monitoring (SHM). This paper presents a study on the estimation of fatigue crack length using ultrasonic wave data. The measured signal is first denoised and truncated to extract the informative period of the signal. If a crack is detected, features are extracted to represent the distortion of the signals while reducing the influence of noise with a B-spline based method. Gaussian process regression obtained from an integration of mean and covariance functions is used for the estimation of the crack length. Real-world experiments validates the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信