应用神经逆最优控制设计COVID-19患者治疗方案

V. Chan, E. Hernández-Vargas, E. Sánchez
{"title":"应用神经逆最优控制设计COVID-19患者治疗方案","authors":"V. Chan, E. Hernández-Vargas, E. Sánchez","doi":"10.1109/IJCNN52387.2021.9534240","DOIUrl":null,"url":null,"abstract":"In this paper we apply an inverse optimal controller (IOC) based on a control Lyapunov function (CLF) to schedule theoretical therapies for the novel coronavirus disease (COVID-19). This controller can represent the viral dynamics of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in the host. The virus dynamics consider the antiviral effects and immune responses as control inputs. The proposed controller is based on a Recurrent High Order Neural Network (RHONN) used as an identifier trained with Extended Kalman Filter (EKF). Simulations show that applying treatment 2 days post symptoms would not significantly alter the viral load. The proposed controller to stimulate the immune response displays a better effectiveness compared to the effectiveness displayed by the antiviral effects.","PeriodicalId":396583,"journal":{"name":"2021 International Joint Conference on Neural Networks (IJCNN)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neural inverse optimal control applied to design therapeutic options for patients with COVID-19\",\"authors\":\"V. Chan, E. Hernández-Vargas, E. Sánchez\",\"doi\":\"10.1109/IJCNN52387.2021.9534240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we apply an inverse optimal controller (IOC) based on a control Lyapunov function (CLF) to schedule theoretical therapies for the novel coronavirus disease (COVID-19). This controller can represent the viral dynamics of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in the host. The virus dynamics consider the antiviral effects and immune responses as control inputs. The proposed controller is based on a Recurrent High Order Neural Network (RHONN) used as an identifier trained with Extended Kalman Filter (EKF). Simulations show that applying treatment 2 days post symptoms would not significantly alter the viral load. The proposed controller to stimulate the immune response displays a better effectiveness compared to the effectiveness displayed by the antiviral effects.\",\"PeriodicalId\":396583,\"journal\":{\"name\":\"2021 International Joint Conference on Neural Networks (IJCNN)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Joint Conference on Neural Networks (IJCNN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN52387.2021.9534240\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN52387.2021.9534240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文应用基于控制李雅普诺夫函数(CLF)的逆最优控制器(IOC)对新型冠状病毒病(COVID-19)进行理论治疗调度。该控制器可代表严重急性呼吸综合征冠状病毒2 (SARS-CoV-2)在宿主体内的病毒动力学。病毒动力学考虑抗病毒作用和免疫反应作为控制输入。所提出的控制器基于循环高阶神经网络(RHONN)作为标识符,使用扩展卡尔曼滤波器(EKF)进行训练。模拟显示,在出现症状后2天进行治疗不会显著改变病毒载量。与抗病毒效果相比,所提出的控制器刺激免疫反应的效果更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural inverse optimal control applied to design therapeutic options for patients with COVID-19
In this paper we apply an inverse optimal controller (IOC) based on a control Lyapunov function (CLF) to schedule theoretical therapies for the novel coronavirus disease (COVID-19). This controller can represent the viral dynamics of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in the host. The virus dynamics consider the antiviral effects and immune responses as control inputs. The proposed controller is based on a Recurrent High Order Neural Network (RHONN) used as an identifier trained with Extended Kalman Filter (EKF). Simulations show that applying treatment 2 days post symptoms would not significantly alter the viral load. The proposed controller to stimulate the immune response displays a better effectiveness compared to the effectiveness displayed by the antiviral effects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信