电动汽车助力转向系统的pid -蚁群优化控制

R. A. Hanifah, S. Toha, S. Ahmad
{"title":"电动汽车助力转向系统的pid -蚁群优化控制","authors":"R. A. Hanifah, S. Toha, S. Ahmad","doi":"10.1109/ICSIMA.2013.6717979","DOIUrl":null,"url":null,"abstract":"Electric Power Assist Steering (EPAS) system offers a significant potential in enhancing the driving performance of a vehicle where the energy conserving issue is important. In this paper, Ant Colony Optimization (ACO) algorithm is implemented as tuning mechanism for PID controller. The aim of this hybrid controller is to minimize energy consumption of the EPAS system in Electric Vehicle (EV) by minimizing the assist current supplied to the assist motor. The ACO algorithm searching technique is applied to search for the best gain parameters of the PID controller. The fast tuning feature of ACO algorithm is the factor that distinguish this hybrid method as compared to conventional trial and error method PID controller tuning. Simulation results shows the performance and effectiveness of using ACO algorithm for PID tuning.","PeriodicalId":182424,"journal":{"name":"2013 IEEE International Conference on Smart Instrumentation, Measurement and Applications (ICSIMA)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"PID-Ant Colony Optimization (ACO) control for Electric Power Assist Steering system for electric vehicle\",\"authors\":\"R. A. Hanifah, S. Toha, S. Ahmad\",\"doi\":\"10.1109/ICSIMA.2013.6717979\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electric Power Assist Steering (EPAS) system offers a significant potential in enhancing the driving performance of a vehicle where the energy conserving issue is important. In this paper, Ant Colony Optimization (ACO) algorithm is implemented as tuning mechanism for PID controller. The aim of this hybrid controller is to minimize energy consumption of the EPAS system in Electric Vehicle (EV) by minimizing the assist current supplied to the assist motor. The ACO algorithm searching technique is applied to search for the best gain parameters of the PID controller. The fast tuning feature of ACO algorithm is the factor that distinguish this hybrid method as compared to conventional trial and error method PID controller tuning. Simulation results shows the performance and effectiveness of using ACO algorithm for PID tuning.\",\"PeriodicalId\":182424,\"journal\":{\"name\":\"2013 IEEE International Conference on Smart Instrumentation, Measurement and Applications (ICSIMA)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Smart Instrumentation, Measurement and Applications (ICSIMA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSIMA.2013.6717979\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Smart Instrumentation, Measurement and Applications (ICSIMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSIMA.2013.6717979","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

电动助力转向(EPAS)系统在提高汽车节能性能方面具有重要的潜力。本文采用蚁群优化算法作为PID控制器的整定机制。该混合控制器的目标是通过最小化提供给辅助电机的辅助电流来最小化电动汽车(EV) EPAS系统的能量消耗。采用蚁群算法搜索技术搜索PID控制器的最佳增益参数。蚁群算法的快速整定特性是该混合方法区别于传统试错法PID控制器整定的重要因素。仿真结果表明了用蚁群算法进行PID整定的性能和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PID-Ant Colony Optimization (ACO) control for Electric Power Assist Steering system for electric vehicle
Electric Power Assist Steering (EPAS) system offers a significant potential in enhancing the driving performance of a vehicle where the energy conserving issue is important. In this paper, Ant Colony Optimization (ACO) algorithm is implemented as tuning mechanism for PID controller. The aim of this hybrid controller is to minimize energy consumption of the EPAS system in Electric Vehicle (EV) by minimizing the assist current supplied to the assist motor. The ACO algorithm searching technique is applied to search for the best gain parameters of the PID controller. The fast tuning feature of ACO algorithm is the factor that distinguish this hybrid method as compared to conventional trial and error method PID controller tuning. Simulation results shows the performance and effectiveness of using ACO algorithm for PID tuning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信