基于基因表达式编程的电力变压器油中溶解气体含量预测

ZiBin Hu, Yongli Zhu, Zhuo Dong, H. Li
{"title":"基于基因表达式编程的电力变压器油中溶解气体含量预测","authors":"ZiBin Hu, Yongli Zhu, Zhuo Dong, H. Li","doi":"10.1109/APAP.2011.6180978","DOIUrl":null,"url":null,"abstract":"In order to predicting the operational status and the latent faults of a power transformer effectively. A new method to forecast the dissolved gases' concentration in transformer oil based on GEP sliding window model is proposed. According to the change characteristics of the dissolved gases' concentration in transformer oil , selects a appropriate embedding dimension, terminals, functions and other running parameters of GEP, then evolve each gas's forecasting models which driven by the fitness function for genetic operation. With a running instance of a power transformer, prediction results for seven major gases and the prediction formula of H2 are given in this paper, then contrasts with the MGM (1,7) model. The comparative results show that GEP model can improve the prediction accuracy effectively.","PeriodicalId":435652,"journal":{"name":"2011 International Conference on Advanced Power System Automation and Protection","volume":"157 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Prediction of gases content dissolved in power transformer oil based on gene expression programming\",\"authors\":\"ZiBin Hu, Yongli Zhu, Zhuo Dong, H. Li\",\"doi\":\"10.1109/APAP.2011.6180978\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to predicting the operational status and the latent faults of a power transformer effectively. A new method to forecast the dissolved gases' concentration in transformer oil based on GEP sliding window model is proposed. According to the change characteristics of the dissolved gases' concentration in transformer oil , selects a appropriate embedding dimension, terminals, functions and other running parameters of GEP, then evolve each gas's forecasting models which driven by the fitness function for genetic operation. With a running instance of a power transformer, prediction results for seven major gases and the prediction formula of H2 are given in this paper, then contrasts with the MGM (1,7) model. The comparative results show that GEP model can improve the prediction accuracy effectively.\",\"PeriodicalId\":435652,\"journal\":{\"name\":\"2011 International Conference on Advanced Power System Automation and Protection\",\"volume\":\"157 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Advanced Power System Automation and Protection\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APAP.2011.6180978\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Advanced Power System Automation and Protection","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APAP.2011.6180978","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

为了有效地预测电力变压器的运行状态和潜在故障。提出了一种基于GEP滑动窗口模型预测变压器油中溶解气体浓度的新方法。根据变压器油中溶解气体浓度的变化特点,选择合适的GEP嵌入维数、端点、函数等运行参数,演化出由适应度函数驱动的各种气体预测模型进行遗传运算。以某电力变压器为例,给出了7种主要气体的预测结果和H2的预测公式,并与MGM(1,7)模型进行了对比。对比结果表明,GEP模型能有效提高预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction of gases content dissolved in power transformer oil based on gene expression programming
In order to predicting the operational status and the latent faults of a power transformer effectively. A new method to forecast the dissolved gases' concentration in transformer oil based on GEP sliding window model is proposed. According to the change characteristics of the dissolved gases' concentration in transformer oil , selects a appropriate embedding dimension, terminals, functions and other running parameters of GEP, then evolve each gas's forecasting models which driven by the fitness function for genetic operation. With a running instance of a power transformer, prediction results for seven major gases and the prediction formula of H2 are given in this paper, then contrasts with the MGM (1,7) model. The comparative results show that GEP model can improve the prediction accuracy effectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信