基于统计CSI的ris辅助大规模MIMO系统分析与优化

Kangda Zhi, Cunhua Pan, Gui Zhou, Hong Ren, Kezhi Wang
{"title":"基于统计CSI的ris辅助大规模MIMO系统分析与优化","authors":"Kangda Zhi, Cunhua Pan, Gui Zhou, Hong Ren, Kezhi Wang","doi":"10.1109/ICCCWorkshops52231.2021.9538874","DOIUrl":null,"url":null,"abstract":"This paper considers an uplink reconfigurable intelligent surface (RIS)-aided massive multiple-input multiple-output (MIMO) system with statistical channel state information (CSI). The RIS is deployed to help conventional massive MIMO networks serve the users in the dead zone. We consider the Rician channel model and exploit the long-time statistical CSI to design the phase shifts of the RIS, while the maximum ratio combination (MRC) technique is applied for the active beamforming at the base station (BS) relying on the instantaneous CSI. Firstly, we derive the closed-form expressions for the uplink achievable rate which holds for arbitrary numbers of base station (BS) antennas. Then, we propose a genetic algorithm (GA)-based method to maximize the minimum user rate by optimizing the phase shifts at the RIS. Finally, extensive simulations are provided to validate the benefits by integrating RIS into conventional massive MIMO systems.","PeriodicalId":335240,"journal":{"name":"2021 IEEE/CIC International Conference on Communications in China (ICCC Workshops)","volume":"515 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Analysis and Optimization of RIS-aided Massive MIMO Systems with Statistical CSI\",\"authors\":\"Kangda Zhi, Cunhua Pan, Gui Zhou, Hong Ren, Kezhi Wang\",\"doi\":\"10.1109/ICCCWorkshops52231.2021.9538874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers an uplink reconfigurable intelligent surface (RIS)-aided massive multiple-input multiple-output (MIMO) system with statistical channel state information (CSI). The RIS is deployed to help conventional massive MIMO networks serve the users in the dead zone. We consider the Rician channel model and exploit the long-time statistical CSI to design the phase shifts of the RIS, while the maximum ratio combination (MRC) technique is applied for the active beamforming at the base station (BS) relying on the instantaneous CSI. Firstly, we derive the closed-form expressions for the uplink achievable rate which holds for arbitrary numbers of base station (BS) antennas. Then, we propose a genetic algorithm (GA)-based method to maximize the minimum user rate by optimizing the phase shifts at the RIS. Finally, extensive simulations are provided to validate the benefits by integrating RIS into conventional massive MIMO systems.\",\"PeriodicalId\":335240,\"journal\":{\"name\":\"2021 IEEE/CIC International Conference on Communications in China (ICCC Workshops)\",\"volume\":\"515 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE/CIC International Conference on Communications in China (ICCC Workshops)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCCWorkshops52231.2021.9538874\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/CIC International Conference on Communications in China (ICCC Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCWorkshops52231.2021.9538874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

研究了一种具有统计信道状态信息(CSI)的上行可重构智能曲面(RIS)辅助大规模多输入多输出(MIMO)系统。RIS的部署是为了帮助传统的大规模MIMO网络在死区为用户服务。我们考虑了ricr信道模型,利用长时间的统计CSI来设计RIS的相移,并利用最大比值组合(MRC)技术来实现基于瞬时CSI的基站有源波束形成。首先,我们导出了适用于任意数量基站(BS)天线的上行可达速率的封闭表达式。然后,我们提出了一种基于遗传算法(GA)的方法,通过优化RIS的相移来最大化最小用户速率。最后,提供了大量的仿真来验证将RIS集成到传统的大规模MIMO系统中的好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis and Optimization of RIS-aided Massive MIMO Systems with Statistical CSI
This paper considers an uplink reconfigurable intelligent surface (RIS)-aided massive multiple-input multiple-output (MIMO) system with statistical channel state information (CSI). The RIS is deployed to help conventional massive MIMO networks serve the users in the dead zone. We consider the Rician channel model and exploit the long-time statistical CSI to design the phase shifts of the RIS, while the maximum ratio combination (MRC) technique is applied for the active beamforming at the base station (BS) relying on the instantaneous CSI. Firstly, we derive the closed-form expressions for the uplink achievable rate which holds for arbitrary numbers of base station (BS) antennas. Then, we propose a genetic algorithm (GA)-based method to maximize the minimum user rate by optimizing the phase shifts at the RIS. Finally, extensive simulations are provided to validate the benefits by integrating RIS into conventional massive MIMO systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信