通过在线社交媒体挖掘检测社交网络精神障碍

Prof. Narinder Kaur and Lakshay Monga
{"title":"通过在线社交媒体挖掘检测社交网络精神障碍","authors":"Prof. Narinder Kaur and Lakshay Monga","doi":"10.46501/ijmtst0701006","DOIUrl":null,"url":null,"abstract":"Social Network Mental Disorder Detection” or “SNMD” is an approach to analyse data and retrieve sentiment\nthat it embodies. Twitter SNMD analysis is an application of sentiment analysis on data from Twitter\n(tweets), in order to extract sentiments conveyed by the user. In this paper, we aim to review some papers\nregarding research in sentiment analysis on Twitter, describing the methodologies adopted and models\napplied, along with describing a generalized Python based approach. A prototype system is developed and\ntested.","PeriodicalId":436878,"journal":{"name":"January 2021","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Social Network Mental Disorders Detection via\\nOnline Social Media Mining\",\"authors\":\"Prof. Narinder Kaur and Lakshay Monga\",\"doi\":\"10.46501/ijmtst0701006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Social Network Mental Disorder Detection” or “SNMD” is an approach to analyse data and retrieve sentiment\\nthat it embodies. Twitter SNMD analysis is an application of sentiment analysis on data from Twitter\\n(tweets), in order to extract sentiments conveyed by the user. In this paper, we aim to review some papers\\nregarding research in sentiment analysis on Twitter, describing the methodologies adopted and models\\napplied, along with describing a generalized Python based approach. A prototype system is developed and\\ntested.\",\"PeriodicalId\":436878,\"journal\":{\"name\":\"January 2021\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"January 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46501/ijmtst0701006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"January 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46501/ijmtst0701006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

“社会网络精神障碍检测”或“SNMD”是一种分析数据并检索其所体现的情感的方法。Twitter SNMD分析是对Twitter(tweets)数据进行情感分析的一种应用,目的是提取用户传递的情感。在本文中,我们的目标是回顾一些关于Twitter情感分析研究的论文,描述所采用的方法和应用的模型,以及描述一种基于Python的通用方法。开发并测试了原型系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Social Network Mental Disorders Detection via Online Social Media Mining
Social Network Mental Disorder Detection” or “SNMD” is an approach to analyse data and retrieve sentiment that it embodies. Twitter SNMD analysis is an application of sentiment analysis on data from Twitter (tweets), in order to extract sentiments conveyed by the user. In this paper, we aim to review some papers regarding research in sentiment analysis on Twitter, describing the methodologies adopted and models applied, along with describing a generalized Python based approach. A prototype system is developed and tested.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信