基于混合粒子群算法的多机器人编队轨迹规划

Jingwen Wang, X. Ren, Jun Liu
{"title":"基于混合粒子群算法的多机器人编队轨迹规划","authors":"Jingwen Wang, X. Ren, Jun Liu","doi":"10.1109/IHMSC.2013.88","DOIUrl":null,"url":null,"abstract":"A hybrid particle swarm optimization (PSO) algorithm which consists of continuous and discrete PSO algorithm is introduced to solve the trajectory planning problem of multi-robot formation. The continuous PSO algorithm is utilized to optimize the center position and rotation angle of the desired formation, while the discrete PSO algorithm is to optimize the matching relationship between the initial and target positions. To demonstrate the correctness and validity of the proposed algorithm, simulation results of the trajectory planning for typical formation and another transformed formation are presented.","PeriodicalId":222375,"journal":{"name":"2013 5th International Conference on Intelligent Human-Machine Systems and Cybernetics","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Trajectory Planning for Multi-robot Formation by One Hybrid Particle Swarm Optimization Algorithm\",\"authors\":\"Jingwen Wang, X. Ren, Jun Liu\",\"doi\":\"10.1109/IHMSC.2013.88\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A hybrid particle swarm optimization (PSO) algorithm which consists of continuous and discrete PSO algorithm is introduced to solve the trajectory planning problem of multi-robot formation. The continuous PSO algorithm is utilized to optimize the center position and rotation angle of the desired formation, while the discrete PSO algorithm is to optimize the matching relationship between the initial and target positions. To demonstrate the correctness and validity of the proposed algorithm, simulation results of the trajectory planning for typical formation and another transformed formation are presented.\",\"PeriodicalId\":222375,\"journal\":{\"name\":\"2013 5th International Conference on Intelligent Human-Machine Systems and Cybernetics\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 5th International Conference on Intelligent Human-Machine Systems and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IHMSC.2013.88\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 5th International Conference on Intelligent Human-Machine Systems and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IHMSC.2013.88","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

针对多机器人编队的轨迹规划问题,提出了一种由连续粒子群算法和离散粒子群算法组成的混合粒子群优化算法。连续粒子群算法用于优化期望编队的中心位置和旋转角度,离散粒子群算法用于优化初始位置和目标位置之间的匹配关系。为了验证该算法的正确性和有效性,给出了典型编队和另一种变换编队的轨迹规划仿真结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Trajectory Planning for Multi-robot Formation by One Hybrid Particle Swarm Optimization Algorithm
A hybrid particle swarm optimization (PSO) algorithm which consists of continuous and discrete PSO algorithm is introduced to solve the trajectory planning problem of multi-robot formation. The continuous PSO algorithm is utilized to optimize the center position and rotation angle of the desired formation, while the discrete PSO algorithm is to optimize the matching relationship between the initial and target positions. To demonstrate the correctness and validity of the proposed algorithm, simulation results of the trajectory planning for typical formation and another transformed formation are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信