医院冰箱物联网温度计异常检测模型的创建

Diego Mendes Da Silva, Ingrid Bruno Nunes, Selton Felipe Guedes Da Silva, Elyr Teixeira Alves
{"title":"医院冰箱物联网温度计异常检测模型的创建","authors":"Diego Mendes Da Silva, Ingrid Bruno Nunes, Selton Felipe Guedes Da Silva, Elyr Teixeira Alves","doi":"10.25286/repa.v6i5.2159","DOIUrl":null,"url":null,"abstract":"Ambientes hospitalares precisam de refrigeradores hospitalares para armazenar fármacos, vacinas, bolsas de sangue, dentre outros. Tais equipamentos são configurados de forma a manter determinada faixa de temperatura, visto que os produtos armazenados são sensíveis a mudanças de temperatura fora dessa faixa. Este projeto objetiva analisar as variações de temperatura acima do adequado. Nos experimentos realizados foram implementados diferentes técnicas de detecção de anomalias utilizando três métodos de agrupamento: k-means, DBSCAN e Isolation Forest. Levando em consideração a acurácia encontrada (76,7%), o método utilizado foi o DBSCAN. Com a análise realizada, foi possível perceber diversas relações entre os valores de temperatura, quantidade de alertas e os horários que eles aconteceram. Observou-se que a maior parte das anomalias encontradas aconteceram entre às 6:00 e às 8:00 horas da manhã, coincidindo com o horário de troca de turnos entre funcionários.","PeriodicalId":331078,"journal":{"name":"Revista de Engenharia e Pesquisa Aplicada","volume":"227 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Criação de Modelo de Detecção de Anomalias para Termômetro IoT Usado em Refrigeradores Hospitalares\",\"authors\":\"Diego Mendes Da Silva, Ingrid Bruno Nunes, Selton Felipe Guedes Da Silva, Elyr Teixeira Alves\",\"doi\":\"10.25286/repa.v6i5.2159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ambientes hospitalares precisam de refrigeradores hospitalares para armazenar fármacos, vacinas, bolsas de sangue, dentre outros. Tais equipamentos são configurados de forma a manter determinada faixa de temperatura, visto que os produtos armazenados são sensíveis a mudanças de temperatura fora dessa faixa. Este projeto objetiva analisar as variações de temperatura acima do adequado. Nos experimentos realizados foram implementados diferentes técnicas de detecção de anomalias utilizando três métodos de agrupamento: k-means, DBSCAN e Isolation Forest. Levando em consideração a acurácia encontrada (76,7%), o método utilizado foi o DBSCAN. Com a análise realizada, foi possível perceber diversas relações entre os valores de temperatura, quantidade de alertas e os horários que eles aconteceram. Observou-se que a maior parte das anomalias encontradas aconteceram entre às 6:00 e às 8:00 horas da manhã, coincidindo com o horário de troca de turnos entre funcionários.\",\"PeriodicalId\":331078,\"journal\":{\"name\":\"Revista de Engenharia e Pesquisa Aplicada\",\"volume\":\"227 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista de Engenharia e Pesquisa Aplicada\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25286/repa.v6i5.2159\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista de Engenharia e Pesquisa Aplicada","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25286/repa.v6i5.2159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

医院环境需要医院冰箱来储存药品、疫苗、血袋等。这种设备的配置是为了保持一定的温度范围,因为存储的产品对超出该范围的温度变化很敏感。这个项目的目的是分析温度的变化超过适当的。在实验中,采用k-means、DBSCAN和隔离森林三种聚类方法实现了不同的异常检测技术。考虑到发现的准确性(76.7%),使用的方法是DBSCAN。通过分析,可以注意到温度值、警报数量和它们发生的时间之间的各种关系。据观察,发现的大多数异常情况发生在早上6点到8点之间,与员工之间的轮班时间一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Criação de Modelo de Detecção de Anomalias para Termômetro IoT Usado em Refrigeradores Hospitalares
Ambientes hospitalares precisam de refrigeradores hospitalares para armazenar fármacos, vacinas, bolsas de sangue, dentre outros. Tais equipamentos são configurados de forma a manter determinada faixa de temperatura, visto que os produtos armazenados são sensíveis a mudanças de temperatura fora dessa faixa. Este projeto objetiva analisar as variações de temperatura acima do adequado. Nos experimentos realizados foram implementados diferentes técnicas de detecção de anomalias utilizando três métodos de agrupamento: k-means, DBSCAN e Isolation Forest. Levando em consideração a acurácia encontrada (76,7%), o método utilizado foi o DBSCAN. Com a análise realizada, foi possível perceber diversas relações entre os valores de temperatura, quantidade de alertas e os horários que eles aconteceram. Observou-se que a maior parte das anomalias encontradas aconteceram entre às 6:00 e às 8:00 horas da manhã, coincidindo com o horário de troca de turnos entre funcionários.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信