{"title":"快速排序和避免模式排列","authors":"David Arthur","doi":"10.1137/1.9781611972979.1","DOIUrl":null,"url":null,"abstract":"We say a permutation π \"avoids\" a pattern σ if no length |σ| subsequence of π is ordered in precisely the same way as σ. For example, π avoids (1, 2, 3) if it contains no increasing subsequence of length three. It was recently shown by Marcus and Tardos that the number of permutations of length n avoiding any fixed pattern is at most exponential in n. This suggests the possibility that if π is known a priori to avoid a fixed pattern, it may be possible to sort π in as little as linear time. Fully resolving this possibility seems very challenging, but in this paper, we demonstrate a large class of patterns σ for which σ-avoiding permutations can be sorted in O(n log log log n) time.","PeriodicalId":340112,"journal":{"name":"Workshop on Analytic Algorithmics and Combinatorics","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Fast Sorting and Pattern-avoiding Permutations\",\"authors\":\"David Arthur\",\"doi\":\"10.1137/1.9781611972979.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We say a permutation π \\\"avoids\\\" a pattern σ if no length |σ| subsequence of π is ordered in precisely the same way as σ. For example, π avoids (1, 2, 3) if it contains no increasing subsequence of length three. It was recently shown by Marcus and Tardos that the number of permutations of length n avoiding any fixed pattern is at most exponential in n. This suggests the possibility that if π is known a priori to avoid a fixed pattern, it may be possible to sort π in as little as linear time. Fully resolving this possibility seems very challenging, but in this paper, we demonstrate a large class of patterns σ for which σ-avoiding permutations can be sorted in O(n log log log n) time.\",\"PeriodicalId\":340112,\"journal\":{\"name\":\"Workshop on Analytic Algorithmics and Combinatorics\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Analytic Algorithmics and Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/1.9781611972979.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Analytic Algorithmics and Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611972979.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We say a permutation π "avoids" a pattern σ if no length |σ| subsequence of π is ordered in precisely the same way as σ. For example, π avoids (1, 2, 3) if it contains no increasing subsequence of length three. It was recently shown by Marcus and Tardos that the number of permutations of length n avoiding any fixed pattern is at most exponential in n. This suggests the possibility that if π is known a priori to avoid a fixed pattern, it may be possible to sort π in as little as linear time. Fully resolving this possibility seems very challenging, but in this paper, we demonstrate a large class of patterns σ for which σ-avoiding permutations can be sorted in O(n log log log n) time.