交错分布:数据流多处理器系统的循环分配方案

J. T. Lim, A. Hurson, B. Lee, B. Shirazi
{"title":"交错分布:数据流多处理器系统的循环分配方案","authors":"J. T. Lim, A. Hurson, B. Lee, B. Shirazi","doi":"10.1109/FMPC.1992.234944","DOIUrl":null,"url":null,"abstract":"The authors present a staggered distribution scheme for DOACROSS loops. The scheme uses heuristics to distribute the loop iterations unevenly among processors in order to mask the delay caused by data dependencies and inter-PE (processing element) communication. Simulation results have shown that this scheme is effective for loops that have a large degree of parallelism among iterations. The scheme, due to its nature, distributes loop iterations among PEs based on architectural characteristics of the underlying organization, i.e. processor speed and communication cost. The maximum speedup attained is very close to the maximum speedup possible for a particular loop even in the presence of inter-PE communication cost. This scheme utilizes processors more efficiently, since, relative to the equal distribution approach, it requires fewer processors to attain maximum speedup. Although this scheme produces an unbalanced distribution among processors, this can be remedied by considering other loops when making the distribution to produce a balanced load among processors.<<ETX>>","PeriodicalId":117789,"journal":{"name":"[Proceedings 1992] The Fourth Symposium on the Frontiers of Massively Parallel Computation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1992-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Staggered distribution: a loop allocation scheme for dataflow multiprocessor systems\",\"authors\":\"J. T. Lim, A. Hurson, B. Lee, B. Shirazi\",\"doi\":\"10.1109/FMPC.1992.234944\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors present a staggered distribution scheme for DOACROSS loops. The scheme uses heuristics to distribute the loop iterations unevenly among processors in order to mask the delay caused by data dependencies and inter-PE (processing element) communication. Simulation results have shown that this scheme is effective for loops that have a large degree of parallelism among iterations. The scheme, due to its nature, distributes loop iterations among PEs based on architectural characteristics of the underlying organization, i.e. processor speed and communication cost. The maximum speedup attained is very close to the maximum speedup possible for a particular loop even in the presence of inter-PE communication cost. This scheme utilizes processors more efficiently, since, relative to the equal distribution approach, it requires fewer processors to attain maximum speedup. Although this scheme produces an unbalanced distribution among processors, this can be remedied by considering other loops when making the distribution to produce a balanced load among processors.<<ETX>>\",\"PeriodicalId\":117789,\"journal\":{\"name\":\"[Proceedings 1992] The Fourth Symposium on the Frontiers of Massively Parallel Computation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[Proceedings 1992] The Fourth Symposium on the Frontiers of Massively Parallel Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FMPC.1992.234944\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings 1992] The Fourth Symposium on the Frontiers of Massively Parallel Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FMPC.1992.234944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

作者提出了DOACROSS循环的交错分布方案。该方案使用启发式算法在处理器之间不均匀地分配循环迭代,以掩盖由数据依赖和处理元素间通信引起的延迟。仿真结果表明,该方案对于迭代间并行度较大的循环是有效的。该方案根据底层组织的架构特征(即处理器速度和通信成本)在pe之间分配循环迭代。即使在存在pe间通信成本的情况下,所获得的最大加速也非常接近特定环路可能的最大加速。该方案更有效地利用处理器,因为相对于平均分配方法,它需要更少的处理器来获得最大的加速。尽管该方案在处理器之间产生不平衡的分布,但在进行分布以在处理器之间产生平衡负载时,可以通过考虑其他循环来补救。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Staggered distribution: a loop allocation scheme for dataflow multiprocessor systems
The authors present a staggered distribution scheme for DOACROSS loops. The scheme uses heuristics to distribute the loop iterations unevenly among processors in order to mask the delay caused by data dependencies and inter-PE (processing element) communication. Simulation results have shown that this scheme is effective for loops that have a large degree of parallelism among iterations. The scheme, due to its nature, distributes loop iterations among PEs based on architectural characteristics of the underlying organization, i.e. processor speed and communication cost. The maximum speedup attained is very close to the maximum speedup possible for a particular loop even in the presence of inter-PE communication cost. This scheme utilizes processors more efficiently, since, relative to the equal distribution approach, it requires fewer processors to attain maximum speedup. Although this scheme produces an unbalanced distribution among processors, this can be remedied by considering other loops when making the distribution to produce a balanced load among processors.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信