将被动自动缩放转换为主动自动缩放

L. Moore, Kathryn Bean, T. Ellahi
{"title":"将被动自动缩放转换为主动自动缩放","authors":"L. Moore, Kathryn Bean, T. Ellahi","doi":"10.1145/2460756.2460758","DOIUrl":null,"url":null,"abstract":"Elasticity is a key characteristic of cloud platforms enabling resource to be acquired on-demand in response to time-varying workloads. We introduce a new elasticity management framework that takes as input commonly used reactive rule-based scaling strategies but offers in return proactive auto-scaling. The elasticity framework combines reactive and predictive auto-scaling techniques, and we discuss the specification and performance of these individual components. We present a case study, based on real datasets, to demonstrate that our framework is capable of making appropriate auto-scaling decisions that can improve resource utilization compared to that obtained from a purely reactive approach.","PeriodicalId":205924,"journal":{"name":"CloudDP '13","volume":"23 7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"54","resultStr":"{\"title\":\"Transforming reactive auto-scaling into proactive auto-scaling\",\"authors\":\"L. Moore, Kathryn Bean, T. Ellahi\",\"doi\":\"10.1145/2460756.2460758\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Elasticity is a key characteristic of cloud platforms enabling resource to be acquired on-demand in response to time-varying workloads. We introduce a new elasticity management framework that takes as input commonly used reactive rule-based scaling strategies but offers in return proactive auto-scaling. The elasticity framework combines reactive and predictive auto-scaling techniques, and we discuss the specification and performance of these individual components. We present a case study, based on real datasets, to demonstrate that our framework is capable of making appropriate auto-scaling decisions that can improve resource utilization compared to that obtained from a purely reactive approach.\",\"PeriodicalId\":205924,\"journal\":{\"name\":\"CloudDP '13\",\"volume\":\"23 7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"54\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CloudDP '13\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2460756.2460758\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CloudDP '13","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2460756.2460758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 54

摘要

弹性是云平台的一个关键特征,它使资源能够根据时变的工作负载按需获取。我们引入了一个新的弹性管理框架,它将常用的基于规则的响应式扩展策略作为输入,但作为回报,它提供了主动的自动扩展。弹性框架结合了响应式和预测性自动缩放技术,我们讨论了这些单独组件的规范和性能。我们提出了一个基于真实数据集的案例研究,以证明我们的框架能够做出适当的自动缩放决策,与纯粹的反应性方法相比,可以提高资源利用率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transforming reactive auto-scaling into proactive auto-scaling
Elasticity is a key characteristic of cloud platforms enabling resource to be acquired on-demand in response to time-varying workloads. We introduce a new elasticity management framework that takes as input commonly used reactive rule-based scaling strategies but offers in return proactive auto-scaling. The elasticity framework combines reactive and predictive auto-scaling techniques, and we discuss the specification and performance of these individual components. We present a case study, based on real datasets, to demonstrate that our framework is capable of making appropriate auto-scaling decisions that can improve resource utilization compared to that obtained from a purely reactive approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信