{"title":"论量子计算中酉变换的Kolmogorov复杂度","authors":"A. Kaltchenko","doi":"10.26634/jmat.11.2.19190","DOIUrl":null,"url":null,"abstract":"We introduce a notion of Kolmogorov complexity of unitary transformation, which can (roughly) be understood as the least possible amount of information required to fully describe and reconstruct a given finite unitary transformation. In the context of quantum computing, it corresponds to the least possible amount of data to define and describe a quantum circuit or quantum computer program. Our Kolmogorov complexity of unitary transformation is built upon Kolmogorov \"qubit complexity\" of Berthiaume, W. Van Dam and S. Laplante via mapping from unitary transformations to unnormalized density operators, which are subsequently \"purified\" into unnormalized vectors in Hilbert space. We discuss the optimality of our notion of Kolmogorov complexity in a broad sense.","PeriodicalId":297202,"journal":{"name":"i-manager’s Journal on Mathematics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Kolmogorov Complexity of Unitary Transformations in Quantum Computing\",\"authors\":\"A. Kaltchenko\",\"doi\":\"10.26634/jmat.11.2.19190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a notion of Kolmogorov complexity of unitary transformation, which can (roughly) be understood as the least possible amount of information required to fully describe and reconstruct a given finite unitary transformation. In the context of quantum computing, it corresponds to the least possible amount of data to define and describe a quantum circuit or quantum computer program. Our Kolmogorov complexity of unitary transformation is built upon Kolmogorov \\\"qubit complexity\\\" of Berthiaume, W. Van Dam and S. Laplante via mapping from unitary transformations to unnormalized density operators, which are subsequently \\\"purified\\\" into unnormalized vectors in Hilbert space. We discuss the optimality of our notion of Kolmogorov complexity in a broad sense.\",\"PeriodicalId\":297202,\"journal\":{\"name\":\"i-manager’s Journal on Mathematics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"i-manager’s Journal on Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26634/jmat.11.2.19190\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"i-manager’s Journal on Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26634/jmat.11.2.19190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们引入了酉变换的Kolmogorov复杂度的概念,它可以(粗略地)被理解为完全描述和重构给定的有限酉变换所需的最少信息量。在量子计算的背景下,它对应于尽可能少的数据量来定义和描述量子电路或量子计算机程序。我们的幺正变换的Kolmogorov复杂度是建立在Berthiaume, W. Van Dam和S. Laplante的Kolmogorov“量子比特复杂度”的基础上,通过将幺正变换映射到非规范化密度算子,然后将其“纯化”成Hilbert空间中的非规范化向量。我们从广义上讨论了Kolmogorov复杂性概念的最优性。
On Kolmogorov Complexity of Unitary Transformations in Quantum Computing
We introduce a notion of Kolmogorov complexity of unitary transformation, which can (roughly) be understood as the least possible amount of information required to fully describe and reconstruct a given finite unitary transformation. In the context of quantum computing, it corresponds to the least possible amount of data to define and describe a quantum circuit or quantum computer program. Our Kolmogorov complexity of unitary transformation is built upon Kolmogorov "qubit complexity" of Berthiaume, W. Van Dam and S. Laplante via mapping from unitary transformations to unnormalized density operators, which are subsequently "purified" into unnormalized vectors in Hilbert space. We discuss the optimality of our notion of Kolmogorov complexity in a broad sense.