二尖瓣多普勒信号特征的测定

E. Uzunhisarcikli, T. Koza, M. Kaya, İdris Ardiç
{"title":"二尖瓣多普勒信号特征的测定","authors":"E. Uzunhisarcikli, T. Koza, M. Kaya, İdris Ardiç","doi":"10.1109/BIYOMUT.2010.5479816","DOIUrl":null,"url":null,"abstract":"In this study, entropy is calculated from sub-bands of clinical mitral valve Doppler signals DWT (Discrete Wavelet Tranform). Calculated entropy values are compared for healthy and patient mitral valve regurgitation. This study comprises two stages. In the first stage, mitral valve Doppler signals are divided sub-bands with DWT and changed values are determined on the frequency spectrum. In the second stage, entropy are calculated each sub-bands which determined with DWT. As a result, different features are obtained between mitral valve regurgitation and healthy patients. These features can help to diagnosis using artificial intelligence techniques or expert systems.","PeriodicalId":180275,"journal":{"name":"2010 15th National Biomedical Engineering Meeting","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determination of feature for mitral valve Doppler signals\",\"authors\":\"E. Uzunhisarcikli, T. Koza, M. Kaya, İdris Ardiç\",\"doi\":\"10.1109/BIYOMUT.2010.5479816\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, entropy is calculated from sub-bands of clinical mitral valve Doppler signals DWT (Discrete Wavelet Tranform). Calculated entropy values are compared for healthy and patient mitral valve regurgitation. This study comprises two stages. In the first stage, mitral valve Doppler signals are divided sub-bands with DWT and changed values are determined on the frequency spectrum. In the second stage, entropy are calculated each sub-bands which determined with DWT. As a result, different features are obtained between mitral valve regurgitation and healthy patients. These features can help to diagnosis using artificial intelligence techniques or expert systems.\",\"PeriodicalId\":180275,\"journal\":{\"name\":\"2010 15th National Biomedical Engineering Meeting\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 15th National Biomedical Engineering Meeting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIYOMUT.2010.5479816\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 15th National Biomedical Engineering Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIYOMUT.2010.5479816","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,从临床二尖瓣多普勒信号的DWT(离散小波变换)子带计算熵。计算熵值比较健康和患者二尖瓣返流。本研究分为两个阶段。第一步,用DWT对二尖瓣多普勒信号进行分频,确定频谱变化值;在第二阶段,计算由小波变换确定的每个子带的熵。因此,二尖瓣反流与健康患者有不同的特征。这些特征可以帮助使用人工智能技术或专家系统进行诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Determination of feature for mitral valve Doppler signals
In this study, entropy is calculated from sub-bands of clinical mitral valve Doppler signals DWT (Discrete Wavelet Tranform). Calculated entropy values are compared for healthy and patient mitral valve regurgitation. This study comprises two stages. In the first stage, mitral valve Doppler signals are divided sub-bands with DWT and changed values are determined on the frequency spectrum. In the second stage, entropy are calculated each sub-bands which determined with DWT. As a result, different features are obtained between mitral valve regurgitation and healthy patients. These features can help to diagnosis using artificial intelligence techniques or expert systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信