单幅图像的散焦估计

Shiqian Wu, Weisi Lin
{"title":"单幅图像的散焦估计","authors":"Shiqian Wu, Weisi Lin","doi":"10.1109/ICCCN.2008.ECP.173","DOIUrl":null,"url":null,"abstract":"This paper derives the formulae for defocus blur parameter from a single image, based upon the line spread function (LSF). To achieve high accuracy and robustness, the over determining strategies are adopted: 1) a number of LSFs on one edge are extracted; 2) more edges in the images are used. The trust-region method is then employed to obtain the optimal estimation of blur parameter. The experimental results have demonstrated the effectiveness of the proposed method. It can be used for blind image quality evaluation in vision-based applications.","PeriodicalId":314071,"journal":{"name":"2008 Proceedings of 17th International Conference on Computer Communications and Networks","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Defocus Estimation from a Single Image\",\"authors\":\"Shiqian Wu, Weisi Lin\",\"doi\":\"10.1109/ICCCN.2008.ECP.173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper derives the formulae for defocus blur parameter from a single image, based upon the line spread function (LSF). To achieve high accuracy and robustness, the over determining strategies are adopted: 1) a number of LSFs on one edge are extracted; 2) more edges in the images are used. The trust-region method is then employed to obtain the optimal estimation of blur parameter. The experimental results have demonstrated the effectiveness of the proposed method. It can be used for blind image quality evaluation in vision-based applications.\",\"PeriodicalId\":314071,\"journal\":{\"name\":\"2008 Proceedings of 17th International Conference on Computer Communications and Networks\",\"volume\":\"82 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Proceedings of 17th International Conference on Computer Communications and Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCCN.2008.ECP.173\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Proceedings of 17th International Conference on Computer Communications and Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCN.2008.ECP.173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文基于线扩展函数(LSF)导出了单幅图像离焦模糊参数的计算公式。为了达到较高的精度和鲁棒性,采用了以下策略:1)在一条边缘上提取多个lsf;2)使用图像中更多的边缘。然后利用信任域方法得到模糊参数的最优估计。实验结果证明了该方法的有效性。该方法可用于基于视觉的应用中图像质量的盲评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Defocus Estimation from a Single Image
This paper derives the formulae for defocus blur parameter from a single image, based upon the line spread function (LSF). To achieve high accuracy and robustness, the over determining strategies are adopted: 1) a number of LSFs on one edge are extracted; 2) more edges in the images are used. The trust-region method is then employed to obtain the optimal estimation of blur parameter. The experimental results have demonstrated the effectiveness of the proposed method. It can be used for blind image quality evaluation in vision-based applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信