基于矢量几何的交通频率预测空间knn算法

M. May, D. Hecker, Christine Kopp, S. Scheider, Daniel Schulz
{"title":"基于矢量几何的交通频率预测空间knn算法","authors":"M. May, D. Hecker, Christine Kopp, S. Scheider, Daniel Schulz","doi":"10.1109/ICDMW.2008.35","DOIUrl":null,"url":null,"abstract":"We introduce s-kNN, a nearest neighbor based spatial data mining algorithm. It belongs to the class of vector-geometry based algorithms that reason on complex spatial objects instead of point measurements. In contrast to most methods in this class, it does on the fly spatial computations that cannot be replaced by a pre-processing step without sacrificing efficiency. The key is a partial evaluation scheme for efficient computations. The algorithm is fully integrated into an object-relational spatial database. It is the basis for traffic frequency predictions (vehicles and pedestrians) for all German cities larger than 50,000 inhabitants and is the basis for pricing of posters in Germany.","PeriodicalId":175955,"journal":{"name":"2008 IEEE International Conference on Data Mining Workshops","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"A Vector-Geometry Based Spatial kNN-Algorithm for Traffic Frequency Predictions\",\"authors\":\"M. May, D. Hecker, Christine Kopp, S. Scheider, Daniel Schulz\",\"doi\":\"10.1109/ICDMW.2008.35\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce s-kNN, a nearest neighbor based spatial data mining algorithm. It belongs to the class of vector-geometry based algorithms that reason on complex spatial objects instead of point measurements. In contrast to most methods in this class, it does on the fly spatial computations that cannot be replaced by a pre-processing step without sacrificing efficiency. The key is a partial evaluation scheme for efficient computations. The algorithm is fully integrated into an object-relational spatial database. It is the basis for traffic frequency predictions (vehicles and pedestrians) for all German cities larger than 50,000 inhabitants and is the basis for pricing of posters in Germany.\",\"PeriodicalId\":175955,\"journal\":{\"name\":\"2008 IEEE International Conference on Data Mining Workshops\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International Conference on Data Mining Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW.2008.35\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Conference on Data Mining Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2008.35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

摘要

介绍了基于最近邻的空间数据挖掘算法s-kNN。它属于基于矢量几何的一类算法,它对复杂的空间对象进行推理,而不是对点的测量。与此类中的大多数方法相反,它动态地进行空间计算,在不牺牲效率的情况下,这些计算不能被预处理步骤所取代。关键是一种高效计算的部分求值方案。该算法完全集成到对象-关系空间数据库中。它是所有人口超过5万的德国城市交通频率预测(车辆和行人)的基础,也是德国海报定价的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Vector-Geometry Based Spatial kNN-Algorithm for Traffic Frequency Predictions
We introduce s-kNN, a nearest neighbor based spatial data mining algorithm. It belongs to the class of vector-geometry based algorithms that reason on complex spatial objects instead of point measurements. In contrast to most methods in this class, it does on the fly spatial computations that cannot be replaced by a pre-processing step without sacrificing efficiency. The key is a partial evaluation scheme for efficient computations. The algorithm is fully integrated into an object-relational spatial database. It is the basis for traffic frequency predictions (vehicles and pedestrians) for all German cities larger than 50,000 inhabitants and is the basis for pricing of posters in Germany.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信