感应电机无速度传感器磁链观测器

J. M. Masala, K. Busawon, M. Djemai
{"title":"感应电机无速度传感器磁链观测器","authors":"J. M. Masala, K. Busawon, M. Djemai","doi":"10.1109/EFEA.2014.7059952","DOIUrl":null,"url":null,"abstract":"In this paper, we present a methodology for the design of a speed sensorless flux observer for induction motors using a behavioral model of the angular speed. We start by developing a reduced order model of the induction motor using complex differential equations. After that, we formulate a behavioral model whose data represents the angular speed of the physical model of the induction motor. This has been done because the original equation governing the rotor speed within the physical model of the machine is highly nonlinear and too complicated to analyse. Furthermore, we use the developed behavioral model in order to design the speed sensorless flux observer for induction motors. The validity of the proposed approach is verified from simulation of the model of the induction motor's flux observer.","PeriodicalId":129568,"journal":{"name":"3rd International Symposium on Environmental Friendly Energies and Applications (EFEA)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Speed sensorless flux observer for induction machines\",\"authors\":\"J. M. Masala, K. Busawon, M. Djemai\",\"doi\":\"10.1109/EFEA.2014.7059952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a methodology for the design of a speed sensorless flux observer for induction motors using a behavioral model of the angular speed. We start by developing a reduced order model of the induction motor using complex differential equations. After that, we formulate a behavioral model whose data represents the angular speed of the physical model of the induction motor. This has been done because the original equation governing the rotor speed within the physical model of the machine is highly nonlinear and too complicated to analyse. Furthermore, we use the developed behavioral model in order to design the speed sensorless flux observer for induction motors. The validity of the proposed approach is verified from simulation of the model of the induction motor's flux observer.\",\"PeriodicalId\":129568,\"journal\":{\"name\":\"3rd International Symposium on Environmental Friendly Energies and Applications (EFEA)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"3rd International Symposium on Environmental Friendly Energies and Applications (EFEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EFEA.2014.7059952\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"3rd International Symposium on Environmental Friendly Energies and Applications (EFEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EFEA.2014.7059952","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种基于角速度行为模型的异步电动机无速度传感器磁链观测器的设计方法。我们首先利用复杂的微分方程建立了感应电动机的降阶模型。然后,我们建立了一个行为模型,其数据表示感应电机物理模型的角速度。这是因为在机器的物理模型中控制转子转速的原始方程是高度非线性的,而且太复杂而无法分析。在此基础上,利用所建立的行为模型设计了异步电动机无速度传感器磁链观测器。通过对异步电动机磁链观测器模型的仿真,验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Speed sensorless flux observer for induction machines
In this paper, we present a methodology for the design of a speed sensorless flux observer for induction motors using a behavioral model of the angular speed. We start by developing a reduced order model of the induction motor using complex differential equations. After that, we formulate a behavioral model whose data represents the angular speed of the physical model of the induction motor. This has been done because the original equation governing the rotor speed within the physical model of the machine is highly nonlinear and too complicated to analyse. Furthermore, we use the developed behavioral model in order to design the speed sensorless flux observer for induction motors. The validity of the proposed approach is verified from simulation of the model of the induction motor's flux observer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信