关于MP检验和θ未知的N (θ,cθ)分布中的mvue:举例和应用

D. Bhattacharjee, N. Mukhopadhyay
{"title":"关于MP检验和θ未知的N (θ,cθ)分布中的mvue:举例和应用","authors":"D. Bhattacharjee, N. Mukhopadhyay","doi":"10.14490/JJSS.41.075","DOIUrl":null,"url":null,"abstract":"Consider a sequence of independent observations X1, . . . , Xn from a N(θ, cθ) distribution with 0 0) is known. We begin with the problem of testing H0 : θ = θ0 against H1 : θ = θ1 where θ0, θ1(θ0 = θ1) are specified values of θ. The most powerful (MP) level α test depends upon ∑n i=1 X 2 i , a complete and sufficient statistic for θ, which has a multiple of a non-central chi-square distribution with its non-centrality parameter involving n and the true parameter value θ under H0, H1. We first target type-I and type-II error probabilities α and β respectively, with α > 0, β > 0, α + β < 1. We set out to determine the required exact sample size which will control these error probabilities and provide two useful large-sample approximations for the sample size. The three methods provide nearly the same required sample size whether n is small, moderate or large. We also show how one may derive the minimum variance unbiased estimators (MVUEs) for a number of interesting and useful functionals of θ by combining some previous work from Mukhopadhyay and Cicconetti (2004) and Mukhopadhyay and Bhattacharjee (2010). All methodologies are illustrated with both simulated data and real data.","PeriodicalId":326924,"journal":{"name":"Journal of the Japan Statistical Society. Japanese issue","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"ON MP TEST AND THE MVUEs IN A N (θ,cθ) DISTRIBUTION WITH θ UNKNOWN : ILLUSTRATIONS AND APPLICATIONS\",\"authors\":\"D. Bhattacharjee, N. Mukhopadhyay\",\"doi\":\"10.14490/JJSS.41.075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consider a sequence of independent observations X1, . . . , Xn from a N(θ, cθ) distribution with 0 0) is known. We begin with the problem of testing H0 : θ = θ0 against H1 : θ = θ1 where θ0, θ1(θ0 = θ1) are specified values of θ. The most powerful (MP) level α test depends upon ∑n i=1 X 2 i , a complete and sufficient statistic for θ, which has a multiple of a non-central chi-square distribution with its non-centrality parameter involving n and the true parameter value θ under H0, H1. We first target type-I and type-II error probabilities α and β respectively, with α > 0, β > 0, α + β < 1. We set out to determine the required exact sample size which will control these error probabilities and provide two useful large-sample approximations for the sample size. The three methods provide nearly the same required sample size whether n is small, moderate or large. We also show how one may derive the minimum variance unbiased estimators (MVUEs) for a number of interesting and useful functionals of θ by combining some previous work from Mukhopadhyay and Cicconetti (2004) and Mukhopadhyay and Bhattacharjee (2010). All methodologies are illustrated with both simulated data and real data.\",\"PeriodicalId\":326924,\"journal\":{\"name\":\"Journal of the Japan Statistical Society. Japanese issue\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Japan Statistical Society. Japanese issue\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14490/JJSS.41.075\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Japan Statistical Society. Japanese issue","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14490/JJSS.41.075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

考虑一系列独立的观测X1,…,已知N(θ, cθ)分布的Xn(0)。我们从检验H0: θ = θ0对H1: θ = θ1的问题开始,其中θ0, θ1(θ0 = θ1)是θ的指定值。最强大的(MP)水平α检验依赖于∑n i=1 X 2 i,这是θ的完整和充分的统计量,它具有非中心卡方分布的倍数,其非中心性参数涉及n,并且在H0, H1下参数的真值θ。首先,我们分别以α > 0、β > 0、α + β < 1的ⅰ型和ⅱ型误差概率为目标。我们着手确定所需的精确样本量,这将控制这些误差概率,并为样本量提供两个有用的大样本近似值。无论n是小、中等还是大,这三种方法提供的所需样本量几乎相同。我们还展示了如何通过结合Mukhopadhyay和Cicconetti(2004)以及Mukhopadhyay和Bhattacharjee(2010)的一些先前的工作来推导出一些有趣和有用的θ函数的最小方差无偏估计(mvue)。所有方法都用模拟数据和实际数据进行了说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ON MP TEST AND THE MVUEs IN A N (θ,cθ) DISTRIBUTION WITH θ UNKNOWN : ILLUSTRATIONS AND APPLICATIONS
Consider a sequence of independent observations X1, . . . , Xn from a N(θ, cθ) distribution with 0 0) is known. We begin with the problem of testing H0 : θ = θ0 against H1 : θ = θ1 where θ0, θ1(θ0 = θ1) are specified values of θ. The most powerful (MP) level α test depends upon ∑n i=1 X 2 i , a complete and sufficient statistic for θ, which has a multiple of a non-central chi-square distribution with its non-centrality parameter involving n and the true parameter value θ under H0, H1. We first target type-I and type-II error probabilities α and β respectively, with α > 0, β > 0, α + β < 1. We set out to determine the required exact sample size which will control these error probabilities and provide two useful large-sample approximations for the sample size. The three methods provide nearly the same required sample size whether n is small, moderate or large. We also show how one may derive the minimum variance unbiased estimators (MVUEs) for a number of interesting and useful functionals of θ by combining some previous work from Mukhopadhyay and Cicconetti (2004) and Mukhopadhyay and Bhattacharjee (2010). All methodologies are illustrated with both simulated data and real data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信