使用向量引擎支持方法对Jamsostek移动应用程序的情感分析

V. Fitriyana, Lutfi Hakim, Dian Candra Rini Novitasari, Ahmad Hanif Asyhar
{"title":"使用向量引擎支持方法对Jamsostek移动应用程序的情感分析","authors":"V. Fitriyana, Lutfi Hakim, Dian Candra Rini Novitasari, Ahmad Hanif Asyhar","doi":"10.24002/jbi.v14i01.6909","DOIUrl":null,"url":null,"abstract":"Sentiment Analysis of Jamsostek Mobile Application Reviews Using the Support Vector Machine Method. Today's technology is evolving quickly, leading to new developments that have helped produce JMO and other mobile applications that can be useful to Indonesians. The reviews or comments in the JMO can be used as a gauge for quality and user satisfaction. This study aims to analyze the quality of JMO applications and classify reviews or opinions into positive, negative, and neutral categories through sentiment analysis. The Support Vector Machine method is used in this analysis process with a linear kernel approach to determine the level of accuracy of classifying JMO application reviews. Research shows that classifying the SVM method against sentiment analysis of reviews or JMO application reviews produces the best accuracy scores, obtaining results with accuracy of 96%, precision of 92%, recall of 96%, and f1-score of 94%, while for the results of most reviews are positive category reviews with a total of 17.571.Keywords: sentiment analysis, JMO, SVM, linear kernel\n \nPerkembangan pesat teknologi saat ini memunculkan inovasi baru untuk menciptakan berbagai aplikasi mobile yang dapat memberi kemudahan bagi masyarakat Indonesia, salah satunya yaitu JMO. Penelitian ini bertujuan untuk menganalisis kualitas aplikasi JMO dan mengklasifikasikan ulasan atau opini kedalam kategori positif, negatif dan netral melalui analisis sentimen. Metode Support Vector Machine digunakan pada proses analisis ini dengan pendekatan kernel linear untuk mengetahui tingkat akurasi dari pengklasifikasian ulasan aplikasi JMO tersebut. Penelitian menunjukkan bahwa pengklasifikasian metode SVM terhadap analisis sentimen ulasan atau review aplikasi JMO menghasilkan nilai akurasi terbaik, didapatkan hasil dengan accuracy 96%, precision 92%, recall 96%, dan f1-score 94%, sedangkan untuk hasil ulasan terbanyak adalah ulasan berkategori positif dengan jumlah 17.571.Kata Kunci: analisis sentimen, JMO, SVM, kernel linear","PeriodicalId":381749,"journal":{"name":"Jurnal Buana Informatika","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analisis Sentimen Ulasan Aplikasi Jamsostek Mobile Menggunakan Metode Support Vector Machine\",\"authors\":\"V. Fitriyana, Lutfi Hakim, Dian Candra Rini Novitasari, Ahmad Hanif Asyhar\",\"doi\":\"10.24002/jbi.v14i01.6909\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sentiment Analysis of Jamsostek Mobile Application Reviews Using the Support Vector Machine Method. Today's technology is evolving quickly, leading to new developments that have helped produce JMO and other mobile applications that can be useful to Indonesians. The reviews or comments in the JMO can be used as a gauge for quality and user satisfaction. This study aims to analyze the quality of JMO applications and classify reviews or opinions into positive, negative, and neutral categories through sentiment analysis. The Support Vector Machine method is used in this analysis process with a linear kernel approach to determine the level of accuracy of classifying JMO application reviews. Research shows that classifying the SVM method against sentiment analysis of reviews or JMO application reviews produces the best accuracy scores, obtaining results with accuracy of 96%, precision of 92%, recall of 96%, and f1-score of 94%, while for the results of most reviews are positive category reviews with a total of 17.571.Keywords: sentiment analysis, JMO, SVM, linear kernel\\n \\nPerkembangan pesat teknologi saat ini memunculkan inovasi baru untuk menciptakan berbagai aplikasi mobile yang dapat memberi kemudahan bagi masyarakat Indonesia, salah satunya yaitu JMO. Penelitian ini bertujuan untuk menganalisis kualitas aplikasi JMO dan mengklasifikasikan ulasan atau opini kedalam kategori positif, negatif dan netral melalui analisis sentimen. Metode Support Vector Machine digunakan pada proses analisis ini dengan pendekatan kernel linear untuk mengetahui tingkat akurasi dari pengklasifikasian ulasan aplikasi JMO tersebut. Penelitian menunjukkan bahwa pengklasifikasian metode SVM terhadap analisis sentimen ulasan atau review aplikasi JMO menghasilkan nilai akurasi terbaik, didapatkan hasil dengan accuracy 96%, precision 92%, recall 96%, dan f1-score 94%, sedangkan untuk hasil ulasan terbanyak adalah ulasan berkategori positif dengan jumlah 17.571.Kata Kunci: analisis sentimen, JMO, SVM, kernel linear\",\"PeriodicalId\":381749,\"journal\":{\"name\":\"Jurnal Buana Informatika\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Buana Informatika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24002/jbi.v14i01.6909\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Buana Informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24002/jbi.v14i01.6909","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于支持向量机的Jamsostek移动应用评论情感分析今天的技术发展迅速,带来了新的发展,帮助开发了JMO和其他对印度尼西亚人有用的移动应用程序。JMO中的评论或评论可以用作质量和用户满意度的衡量标准。本研究旨在分析JMO应用程序的质量,并通过情感分析将评论或意见分为积极,消极和中立三类。在此分析过程中,采用支持向量机方法和线性核方法来确定JMO应用程序评论分类的准确性水平。研究表明,SVM方法对评论情感分析或JMO应用评论进行分类的准确率得分最高,准确率为96%,精密度为92%,召回率为96%,f1得分为94%,而大多数评论的结果为正面类别评论,共计17.571分。关键词:情感分析,JMO,支持向量机,线性核Perkembangan pesat技术,sarat ini memunculkan inovasi baru untuk menciptakan berbagai应用,移动yangdapat member, kemudahan bagi masyarakat印度尼西亚,salah satunya yitu JMO。Penelitian ini bertujuan untuk menalanalysis kualitas applikasi JMO dan mengklasifikasikan ulasan atau opini kedalam kategori正面、负面和中性的menal分析情绪。方法支持向量机(svm)对数据处理过程进行了分析,并对数据处理过程进行了核线性分析,并对数据处理过程进行了分析。Penelitian menunjukkan bahwa pengklasifikasian方法支持向量机(SVM)预测分析情感分析的评价应用JMO menghasilkan nilai akurasi terbaik, didapatkan hasil dagan正确率96%,精密度92%,召回率96%,dan 1-score 94%, sedangkan untuk hasil ulasan terbanyak adalah ulasan berkategori阳性预测分析17.571。Kata Kunci:情感分析,JMO, SVM,核线性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analisis Sentimen Ulasan Aplikasi Jamsostek Mobile Menggunakan Metode Support Vector Machine
Sentiment Analysis of Jamsostek Mobile Application Reviews Using the Support Vector Machine Method. Today's technology is evolving quickly, leading to new developments that have helped produce JMO and other mobile applications that can be useful to Indonesians. The reviews or comments in the JMO can be used as a gauge for quality and user satisfaction. This study aims to analyze the quality of JMO applications and classify reviews or opinions into positive, negative, and neutral categories through sentiment analysis. The Support Vector Machine method is used in this analysis process with a linear kernel approach to determine the level of accuracy of classifying JMO application reviews. Research shows that classifying the SVM method against sentiment analysis of reviews or JMO application reviews produces the best accuracy scores, obtaining results with accuracy of 96%, precision of 92%, recall of 96%, and f1-score of 94%, while for the results of most reviews are positive category reviews with a total of 17.571.Keywords: sentiment analysis, JMO, SVM, linear kernel   Perkembangan pesat teknologi saat ini memunculkan inovasi baru untuk menciptakan berbagai aplikasi mobile yang dapat memberi kemudahan bagi masyarakat Indonesia, salah satunya yaitu JMO. Penelitian ini bertujuan untuk menganalisis kualitas aplikasi JMO dan mengklasifikasikan ulasan atau opini kedalam kategori positif, negatif dan netral melalui analisis sentimen. Metode Support Vector Machine digunakan pada proses analisis ini dengan pendekatan kernel linear untuk mengetahui tingkat akurasi dari pengklasifikasian ulasan aplikasi JMO tersebut. Penelitian menunjukkan bahwa pengklasifikasian metode SVM terhadap analisis sentimen ulasan atau review aplikasi JMO menghasilkan nilai akurasi terbaik, didapatkan hasil dengan accuracy 96%, precision 92%, recall 96%, dan f1-score 94%, sedangkan untuk hasil ulasan terbanyak adalah ulasan berkategori positif dengan jumlah 17.571.Kata Kunci: analisis sentimen, JMO, SVM, kernel linear
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信