基于权利的渔业结构行为模型

M. Reimer, J. Abbott
{"title":"基于权利的渔业结构行为模型","authors":"M. Reimer, J. Abbott","doi":"10.2139/ssrn.3582502","DOIUrl":null,"url":null,"abstract":"Rights-based management is prevalent in today's developed-world fisheries, yet spatiotemporal models of fishing behavior do not reflect such institutional settings. We develop a model of spatiotemporal fishing behavior that incorporates the dynamic and general equilibrium elements of catch-share fisheries. We propose an estimation strategy that is able to recover structural behavioral parameters through a nested fixed-point maximum likelihood procedure. We illustrate our modeling approach through a Monte Carlo analysis and demonstrate its importance for predicting out-of-sample counterfactual policies.","PeriodicalId":436211,"journal":{"name":"ERN: Natural Resource Economics (Topic)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Structural Behavioral Models for Rights-Based Fisheries\",\"authors\":\"M. Reimer, J. Abbott\",\"doi\":\"10.2139/ssrn.3582502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rights-based management is prevalent in today's developed-world fisheries, yet spatiotemporal models of fishing behavior do not reflect such institutional settings. We develop a model of spatiotemporal fishing behavior that incorporates the dynamic and general equilibrium elements of catch-share fisheries. We propose an estimation strategy that is able to recover structural behavioral parameters through a nested fixed-point maximum likelihood procedure. We illustrate our modeling approach through a Monte Carlo analysis and demonstrate its importance for predicting out-of-sample counterfactual policies.\",\"PeriodicalId\":436211,\"journal\":{\"name\":\"ERN: Natural Resource Economics (Topic)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Natural Resource Economics (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3582502\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Natural Resource Economics (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3582502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

以权利为基础的管理在当今发达国家的渔业中很普遍,但捕捞行为的时空模型并不能反映这种制度背景。我们开发了一个时空捕捞行为模型,该模型结合了捕捞份额渔业的动态和一般平衡要素。我们提出了一种能够通过嵌套不动点极大似然过程恢复结构行为参数的估计策略。我们通过蒙特卡罗分析说明了我们的建模方法,并证明了它对预测样本外反事实策略的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structural Behavioral Models for Rights-Based Fisheries
Rights-based management is prevalent in today's developed-world fisheries, yet spatiotemporal models of fishing behavior do not reflect such institutional settings. We develop a model of spatiotemporal fishing behavior that incorporates the dynamic and general equilibrium elements of catch-share fisheries. We propose an estimation strategy that is able to recover structural behavioral parameters through a nested fixed-point maximum likelihood procedure. We illustrate our modeling approach through a Monte Carlo analysis and demonstrate its importance for predicting out-of-sample counterfactual policies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信