一种基于相似性度量的归一化互相关最优解的信息理论度量

M. I. Vakil, J. A. Malas, D. Megherbi
{"title":"一种基于相似性度量的归一化互相关最优解的信息理论度量","authors":"M. I. Vakil, J. A. Malas, D. Megherbi","doi":"10.1109/NAECON.2015.7443055","DOIUrl":null,"url":null,"abstract":"Similarity measures such as normalized cross correlation (NCC) are widely employed for applications such as pattern recognition and/or template matching which are commonly used in image registration. This approach, however, is not immune to noise variations present in the images especially in case where multiple bands of interest are dominated by both system and external noise present in the sensor's field of view. Thus noise can influence the calculation of correlation coefficients and produce erroneous results during template matching. This work proposes a metric which identifies the best NCC coefficient value or values in case of a spectral data cube, for optimized application of similarity measures for template matching.","PeriodicalId":133804,"journal":{"name":"2015 National Aerospace and Electronics Conference (NAECON)","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"An information theoretic metric for identifying optimum solution for normalized cross correlation based similarity measures\",\"authors\":\"M. I. Vakil, J. A. Malas, D. Megherbi\",\"doi\":\"10.1109/NAECON.2015.7443055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Similarity measures such as normalized cross correlation (NCC) are widely employed for applications such as pattern recognition and/or template matching which are commonly used in image registration. This approach, however, is not immune to noise variations present in the images especially in case where multiple bands of interest are dominated by both system and external noise present in the sensor's field of view. Thus noise can influence the calculation of correlation coefficients and produce erroneous results during template matching. This work proposes a metric which identifies the best NCC coefficient value or values in case of a spectral data cube, for optimized application of similarity measures for template matching.\",\"PeriodicalId\":133804,\"journal\":{\"name\":\"2015 National Aerospace and Electronics Conference (NAECON)\",\"volume\":\"93 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 National Aerospace and Electronics Conference (NAECON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAECON.2015.7443055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 National Aerospace and Electronics Conference (NAECON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAECON.2015.7443055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

相似度度量如归一化互相关(NCC)被广泛应用于图像配准中常用的模式识别和/或模板匹配等应用。然而,这种方法并不能免受图像中存在的噪声变化的影响,特别是在多个感兴趣的波段被传感器视场中存在的系统和外部噪声所主导的情况下。因此,噪声会影响相关系数的计算,在模板匹配过程中产生错误的结果。这项工作提出了一个度量,该度量在光谱数据立方体的情况下识别最佳的NCC系数值或值,用于优化模板匹配相似性度量的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An information theoretic metric for identifying optimum solution for normalized cross correlation based similarity measures
Similarity measures such as normalized cross correlation (NCC) are widely employed for applications such as pattern recognition and/or template matching which are commonly used in image registration. This approach, however, is not immune to noise variations present in the images especially in case where multiple bands of interest are dominated by both system and external noise present in the sensor's field of view. Thus noise can influence the calculation of correlation coefficients and produce erroneous results during template matching. This work proposes a metric which identifies the best NCC coefficient value or values in case of a spectral data cube, for optimized application of similarity measures for template matching.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信