K3曲面的Hilbert平方和Debarre-Voisin变种

O. Debarre, Fr'ed'eric Han, K. O’Grady, C. Voisin
{"title":"K3曲面的Hilbert平方和Debarre-Voisin变种","authors":"O. Debarre, Fr'ed'eric Han, K. O’Grady, C. Voisin","doi":"10.5802/jep.125","DOIUrl":null,"url":null,"abstract":"The Debarre-Voisin hyperk\\\"ahler fourfolds are built from alternating $3$-forms on a $10$-dimensional complex vector space, which we call trivectors. They are analogous to the Beauville-Donagi fourfolds associated with cubic fourfolds. In this article, we study several trivectors whose associated Debarre-Voisin variety is degenerate, in the sense that it is either reducible or has excessive dimension. We show that the Debarre-Voisin varieties specialize, along general $1$-parameter degenerations to these trivectors, to varieties isomorphic or birationally isomorphic to the Hilbert square of a K3 surface.","PeriodicalId":106406,"journal":{"name":"Journal de l’École polytechnique — Mathématiques","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Hilbert squares of K3 surfaces and Debarre-Voisin varieties\",\"authors\":\"O. Debarre, Fr'ed'eric Han, K. O’Grady, C. Voisin\",\"doi\":\"10.5802/jep.125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Debarre-Voisin hyperk\\\\\\\"ahler fourfolds are built from alternating $3$-forms on a $10$-dimensional complex vector space, which we call trivectors. They are analogous to the Beauville-Donagi fourfolds associated with cubic fourfolds. In this article, we study several trivectors whose associated Debarre-Voisin variety is degenerate, in the sense that it is either reducible or has excessive dimension. We show that the Debarre-Voisin varieties specialize, along general $1$-parameter degenerations to these trivectors, to varieties isomorphic or birationally isomorphic to the Hilbert square of a K3 surface.\",\"PeriodicalId\":106406,\"journal\":{\"name\":\"Journal de l’École polytechnique — Mathématiques\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de l’École polytechnique — Mathématiques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/jep.125\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de l’École polytechnique — Mathématiques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/jep.125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

Debarre-Voisin hyperk - ahler四折线是在10维复向量空间(我们称之为三向量)上由交替的3维形式构建的。它们类似于三次四次波维尔-多纳吉四次。在本文中,我们研究了几个三向量,其相关的debarr - voisin变化是简并的,在某种意义上,它要么是可约的,要么是有过维数的。我们证明了Debarre-Voisin变体,沿着这些三向量的一般$1$参数退化,专一于与K3曲面的Hilbert平方同构或双同构的变体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hilbert squares of K3 surfaces and Debarre-Voisin varieties
The Debarre-Voisin hyperk\"ahler fourfolds are built from alternating $3$-forms on a $10$-dimensional complex vector space, which we call trivectors. They are analogous to the Beauville-Donagi fourfolds associated with cubic fourfolds. In this article, we study several trivectors whose associated Debarre-Voisin variety is degenerate, in the sense that it is either reducible or has excessive dimension. We show that the Debarre-Voisin varieties specialize, along general $1$-parameter degenerations to these trivectors, to varieties isomorphic or birationally isomorphic to the Hilbert square of a K3 surface.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信