使用BLE4.0信标的室内定位指纹的监督学习算法

Jesús Lovón-Melgarejo, Manuel Castillo-Cara, L. Orozco-Barbosa, I. García-Varea
{"title":"使用BLE4.0信标的室内定位指纹的监督学习算法","authors":"Jesús Lovón-Melgarejo, Manuel Castillo-Cara, L. Orozco-Barbosa, I. García-Varea","doi":"10.1109/LA-CCI.2017.8285716","DOIUrl":null,"url":null,"abstract":"The increasing interest on deploying ubiquitous context-based services has spurred the need of developing indoor localization mechanisms. Such systems should take advantage of the large amount of wireless networks and radio interfaces already incorporated in most mobile consumer devices. Among the existing radio interfaces, Bluetooth Low Energy (BLE) 4.0 is called to play a major role in the deployment of energy efficient ubiquitous services. In this paper, we first show that the high sensitivity of BLE4.0 to fast fading makes infeasible the use of radio propagation models to directly estimate the distance between a reference transmitter and the mobile device. We then explore the use of supervised learning algorithms towards the development of radio maps of beacons analysing in-depth two metrics accuracy and mean error. Our approach also explores two main parameters: (i) Transmission power (Tx) of the BLE4.0 beacons; and (ii) Physical characteristics of the area. Based on our results, we argue that the mean error can be improved up to 28% configuring the two main parameters.","PeriodicalId":144567,"journal":{"name":"2017 IEEE Latin American Conference on Computational Intelligence (LA-CCI)","volume":"226 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Supervised learning algorithms for indoor localization fingerprinting using BLE4.0 beacons\",\"authors\":\"Jesús Lovón-Melgarejo, Manuel Castillo-Cara, L. Orozco-Barbosa, I. García-Varea\",\"doi\":\"10.1109/LA-CCI.2017.8285716\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increasing interest on deploying ubiquitous context-based services has spurred the need of developing indoor localization mechanisms. Such systems should take advantage of the large amount of wireless networks and radio interfaces already incorporated in most mobile consumer devices. Among the existing radio interfaces, Bluetooth Low Energy (BLE) 4.0 is called to play a major role in the deployment of energy efficient ubiquitous services. In this paper, we first show that the high sensitivity of BLE4.0 to fast fading makes infeasible the use of radio propagation models to directly estimate the distance between a reference transmitter and the mobile device. We then explore the use of supervised learning algorithms towards the development of radio maps of beacons analysing in-depth two metrics accuracy and mean error. Our approach also explores two main parameters: (i) Transmission power (Tx) of the BLE4.0 beacons; and (ii) Physical characteristics of the area. Based on our results, we argue that the mean error can be improved up to 28% configuring the two main parameters.\",\"PeriodicalId\":144567,\"journal\":{\"name\":\"2017 IEEE Latin American Conference on Computational Intelligence (LA-CCI)\",\"volume\":\"226 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Latin American Conference on Computational Intelligence (LA-CCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LA-CCI.2017.8285716\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Latin American Conference on Computational Intelligence (LA-CCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LA-CCI.2017.8285716","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

人们对部署无处不在的基于上下文的服务越来越感兴趣,这刺激了开发室内定位机制的需求。这种系统应该利用大多数移动消费设备中已经包含的大量无线网络和无线电接口。在现有的无线电接口中,蓝牙低功耗(BLE) 4.0被称为在部署节能无处不在的服务中发挥重要作用。在本文中,我们首先表明BLE4.0对快速衰落的高灵敏度使得使用无线电传播模型直接估计参考发射机与移动设备之间的距离变得不可行。然后,我们探索了使用监督学习算法来开发信标的无线电地图,深入分析了两个度量精度和平均误差。我们的方法还探讨了两个主要参数:(i) BLE4.0信标的传输功率(Tx);(ii)该地区的自然特征。根据我们的结果,我们认为配置两个主要参数可以将平均误差提高到28%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Supervised learning algorithms for indoor localization fingerprinting using BLE4.0 beacons
The increasing interest on deploying ubiquitous context-based services has spurred the need of developing indoor localization mechanisms. Such systems should take advantage of the large amount of wireless networks and radio interfaces already incorporated in most mobile consumer devices. Among the existing radio interfaces, Bluetooth Low Energy (BLE) 4.0 is called to play a major role in the deployment of energy efficient ubiquitous services. In this paper, we first show that the high sensitivity of BLE4.0 to fast fading makes infeasible the use of radio propagation models to directly estimate the distance between a reference transmitter and the mobile device. We then explore the use of supervised learning algorithms towards the development of radio maps of beacons analysing in-depth two metrics accuracy and mean error. Our approach also explores two main parameters: (i) Transmission power (Tx) of the BLE4.0 beacons; and (ii) Physical characteristics of the area. Based on our results, we argue that the mean error can be improved up to 28% configuring the two main parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信