Christian Costermans, Jean-Yves Enjalbert, V. H. N. Minh, M. Petitot
{"title":"多重调和和的结构与渐近展开","authors":"Christian Costermans, Jean-Yves Enjalbert, V. H. N. Minh, M. Petitot","doi":"10.1145/1073884.1073900","DOIUrl":null,"url":null,"abstract":"We prove that the algebra of multiple harmonic sums is isomorphic to a shuffle algebra. So the multiple harmonic sums Hs, indexed by the compositions s=(s1,...,sr), are ℝ-linearly independent as real functions defined over ℕ. We deduce then the algorithm to obtain the asymptotic expansion of multiple harmonic sums.","PeriodicalId":311546,"journal":{"name":"Proceedings of the 2005 international symposium on Symbolic and algebraic computation","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Structure and asymptotic expansion of multiple harmonic sums\",\"authors\":\"Christian Costermans, Jean-Yves Enjalbert, V. H. N. Minh, M. Petitot\",\"doi\":\"10.1145/1073884.1073900\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that the algebra of multiple harmonic sums is isomorphic to a shuffle algebra. So the multiple harmonic sums Hs, indexed by the compositions s=(s1,...,sr), are ℝ-linearly independent as real functions defined over ℕ. We deduce then the algorithm to obtain the asymptotic expansion of multiple harmonic sums.\",\"PeriodicalId\":311546,\"journal\":{\"name\":\"Proceedings of the 2005 international symposium on Symbolic and algebraic computation\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2005 international symposium on Symbolic and algebraic computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1073884.1073900\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2005 international symposium on Symbolic and algebraic computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1073884.1073900","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Structure and asymptotic expansion of multiple harmonic sums
We prove that the algebra of multiple harmonic sums is isomorphic to a shuffle algebra. So the multiple harmonic sums Hs, indexed by the compositions s=(s1,...,sr), are ℝ-linearly independent as real functions defined over ℕ. We deduce then the algorithm to obtain the asymptotic expansion of multiple harmonic sums.