{"title":"非交换积分中的迹公式","authors":"S. Yamagami","doi":"10.4171/PRIMS/54-1-7","DOIUrl":null,"url":null,"abstract":"Trace formulas are investigated in non-commutative integration theory. The main result is to evaluate the standard trace of a Takesaki dual and, for this, we introduce the notion of interpolator and accompanied boundary objects. The formula is then applied to explore a variation of Haagerup's trace formula.","PeriodicalId":351745,"journal":{"name":"arXiv: Operator Algebras","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Around trace formulas in non-commutative integration\",\"authors\":\"S. Yamagami\",\"doi\":\"10.4171/PRIMS/54-1-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Trace formulas are investigated in non-commutative integration theory. The main result is to evaluate the standard trace of a Takesaki dual and, for this, we introduce the notion of interpolator and accompanied boundary objects. The formula is then applied to explore a variation of Haagerup's trace formula.\",\"PeriodicalId\":351745,\"journal\":{\"name\":\"arXiv: Operator Algebras\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Operator Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/PRIMS/54-1-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Operator Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/PRIMS/54-1-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Around trace formulas in non-commutative integration
Trace formulas are investigated in non-commutative integration theory. The main result is to evaluate the standard trace of a Takesaki dual and, for this, we introduce the notion of interpolator and accompanied boundary objects. The formula is then applied to explore a variation of Haagerup's trace formula.