{"title":"SUBSCALE:高维数据的快速可伸缩子空间聚类","authors":"Amardeep Kaur, A. Datta","doi":"10.1109/ICDMW.2014.100","DOIUrl":null,"url":null,"abstract":"The aim of subspace clustering is to find groups of similar data points in all possible subspaces of a dataset. Since the number of subspaces is exponential in dimensions, subspace clustering is usually computationally very expensive. The performance of existing algorithms deteriorates drastically with the increase in number of dimensions. Most of them use bottom-up search strategy and there are two main reasons for their inefficiency: (1) Multiple database scans. (2) Either implicit or explicit generation of trivial subspace clusters during the process. We present SUBSCALE, a novel algorithm to directly find the non-trivial subspace clusters with minimal cost and it requires only k database scans for a k-dimensional data set. Our algorithm scales very well with the dimensionality and is highly parallelizable. The experimental evaluation has shown promising results.","PeriodicalId":289269,"journal":{"name":"2014 IEEE International Conference on Data Mining Workshop","volume":"02 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"SUBSCALE: Fast and Scalable Subspace Clustering for High Dimensional Data\",\"authors\":\"Amardeep Kaur, A. Datta\",\"doi\":\"10.1109/ICDMW.2014.100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of subspace clustering is to find groups of similar data points in all possible subspaces of a dataset. Since the number of subspaces is exponential in dimensions, subspace clustering is usually computationally very expensive. The performance of existing algorithms deteriorates drastically with the increase in number of dimensions. Most of them use bottom-up search strategy and there are two main reasons for their inefficiency: (1) Multiple database scans. (2) Either implicit or explicit generation of trivial subspace clusters during the process. We present SUBSCALE, a novel algorithm to directly find the non-trivial subspace clusters with minimal cost and it requires only k database scans for a k-dimensional data set. Our algorithm scales very well with the dimensionality and is highly parallelizable. The experimental evaluation has shown promising results.\",\"PeriodicalId\":289269,\"journal\":{\"name\":\"2014 IEEE International Conference on Data Mining Workshop\",\"volume\":\"02 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Data Mining Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW.2014.100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Data Mining Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2014.100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
SUBSCALE: Fast and Scalable Subspace Clustering for High Dimensional Data
The aim of subspace clustering is to find groups of similar data points in all possible subspaces of a dataset. Since the number of subspaces is exponential in dimensions, subspace clustering is usually computationally very expensive. The performance of existing algorithms deteriorates drastically with the increase in number of dimensions. Most of them use bottom-up search strategy and there are two main reasons for their inefficiency: (1) Multiple database scans. (2) Either implicit or explicit generation of trivial subspace clusters during the process. We present SUBSCALE, a novel algorithm to directly find the non-trivial subspace clusters with minimal cost and it requires only k database scans for a k-dimensional data set. Our algorithm scales very well with the dimensionality and is highly parallelizable. The experimental evaluation has shown promising results.