{"title":"基于高通滤波函数的加权非凸稀疏表示滚动轴承故障诊断","authors":"Yuanhang Sun, Jianbo Yu","doi":"10.1145/3577148.3577161","DOIUrl":null,"url":null,"abstract":"Vibration signal analysis is one of the most effective and convenient method for fault diagnosis in rolling bearing. A challenging problem is how to extract the fault features from the noisy signal accurately. In this paper, a novel sparse representation algorithm, a weighted nonconvex sparse representation with high-pass filter function (WNCSR-HPF) is proposed for bearing fault feature extraction. WNCSR-HPF is developed based on a weighted nonconvex sparse regularization term, which can remove the noise interference and promote sparsity. Moreover, an adaptive setup method of regularization parameter is proposed for improving the applicability of WNCSR-HPF. The majorization-minimization (MM)-based algorithm is developed for solving the objective optimization problem in this paper. A simulation signal and a bearing vibration signal are used to illustrate the effectiveness of WNCSR-HPF for fault feature extraction. The experimental results show that WNCSR-HPF has the good performance on the fault feature extraction.","PeriodicalId":107500,"journal":{"name":"Proceedings of the 2022 5th International Conference on Sensors, Signal and Image Processing","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A weighted nonconvex sparse representation with high-pass filter function for fault diagnosis of rolling bearing\",\"authors\":\"Yuanhang Sun, Jianbo Yu\",\"doi\":\"10.1145/3577148.3577161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vibration signal analysis is one of the most effective and convenient method for fault diagnosis in rolling bearing. A challenging problem is how to extract the fault features from the noisy signal accurately. In this paper, a novel sparse representation algorithm, a weighted nonconvex sparse representation with high-pass filter function (WNCSR-HPF) is proposed for bearing fault feature extraction. WNCSR-HPF is developed based on a weighted nonconvex sparse regularization term, which can remove the noise interference and promote sparsity. Moreover, an adaptive setup method of regularization parameter is proposed for improving the applicability of WNCSR-HPF. The majorization-minimization (MM)-based algorithm is developed for solving the objective optimization problem in this paper. A simulation signal and a bearing vibration signal are used to illustrate the effectiveness of WNCSR-HPF for fault feature extraction. The experimental results show that WNCSR-HPF has the good performance on the fault feature extraction.\",\"PeriodicalId\":107500,\"journal\":{\"name\":\"Proceedings of the 2022 5th International Conference on Sensors, Signal and Image Processing\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2022 5th International Conference on Sensors, Signal and Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3577148.3577161\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 5th International Conference on Sensors, Signal and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3577148.3577161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A weighted nonconvex sparse representation with high-pass filter function for fault diagnosis of rolling bearing
Vibration signal analysis is one of the most effective and convenient method for fault diagnosis in rolling bearing. A challenging problem is how to extract the fault features from the noisy signal accurately. In this paper, a novel sparse representation algorithm, a weighted nonconvex sparse representation with high-pass filter function (WNCSR-HPF) is proposed for bearing fault feature extraction. WNCSR-HPF is developed based on a weighted nonconvex sparse regularization term, which can remove the noise interference and promote sparsity. Moreover, an adaptive setup method of regularization parameter is proposed for improving the applicability of WNCSR-HPF. The majorization-minimization (MM)-based algorithm is developed for solving the objective optimization problem in this paper. A simulation signal and a bearing vibration signal are used to illustrate the effectiveness of WNCSR-HPF for fault feature extraction. The experimental results show that WNCSR-HPF has the good performance on the fault feature extraction.