双树复小波变换在单通道脑电图睡眠状态识别中的应用

A. Hassan, M. Bhuiyan
{"title":"双树复小波变换在单通道脑电图睡眠状态识别中的应用","authors":"A. Hassan, M. Bhuiyan","doi":"10.1109/ICTP.2015.7427924","DOIUrl":null,"url":null,"abstract":"This work analyzes the suitability of spectral features in the Dual Tree Complex Wavelet Transform (DT-CWT) domain for EEG signal analysis by propounding a DT-CWT based feature extraction scheme. Unlike discrete wavelet transform-DT-CWT ensures limited redundancy and provides approximate shift invariance. To demonstrate the efficacy of DT-CWT for EEG signal analysis, it is applied in conjunction with spectral features to devise a feature extraction scheme for automated sleep staging from single-channel EEG. Our findings suggest that spectral features can distinguish between various sleep stages quite well. The p-values obtained by one-way analysis of variance (AN0VA) and graphical analyses also corroborate with this fact Thus, spectral features in the DT-CWT domain may be used to characterize EEG signal. Furthermore, this work can assist the sleep research community to implement various classification models to put computer-aided sleep scoring into clinical practice.","PeriodicalId":410572,"journal":{"name":"2015 IEEE International Conference on Telecommunications and Photonics (ICTP)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"Dual tree complex wavelet transform for sleep state identification from single channel electroencephalogram\",\"authors\":\"A. Hassan, M. Bhuiyan\",\"doi\":\"10.1109/ICTP.2015.7427924\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work analyzes the suitability of spectral features in the Dual Tree Complex Wavelet Transform (DT-CWT) domain for EEG signal analysis by propounding a DT-CWT based feature extraction scheme. Unlike discrete wavelet transform-DT-CWT ensures limited redundancy and provides approximate shift invariance. To demonstrate the efficacy of DT-CWT for EEG signal analysis, it is applied in conjunction with spectral features to devise a feature extraction scheme for automated sleep staging from single-channel EEG. Our findings suggest that spectral features can distinguish between various sleep stages quite well. The p-values obtained by one-way analysis of variance (AN0VA) and graphical analyses also corroborate with this fact Thus, spectral features in the DT-CWT domain may be used to characterize EEG signal. Furthermore, this work can assist the sleep research community to implement various classification models to put computer-aided sleep scoring into clinical practice.\",\"PeriodicalId\":410572,\"journal\":{\"name\":\"2015 IEEE International Conference on Telecommunications and Photonics (ICTP)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Telecommunications and Photonics (ICTP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTP.2015.7427924\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Telecommunications and Photonics (ICTP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTP.2015.7427924","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

摘要

本文通过提出一种基于对偶树复小波变换(DT-CWT)的特征提取方案,分析了对偶树复小波变换(DT-CWT)域频谱特征对脑电信号分析的适用性。与离散小波变换不同,dt - cwt保证了有限的冗余和近似的平移不变性。为了证明DT-CWT在脑电信号分析中的有效性,将其与频谱特征相结合,设计了一种单通道脑电信号自动睡眠分期的特征提取方案。我们的研究结果表明,光谱特征可以很好地区分不同的睡眠阶段。通过单因素方差分析(AN0VA)和图形分析得到的p值也证实了这一事实,因此可以利用DT-CWT域的频谱特征来表征脑电信号。此外,这项工作可以帮助睡眠研究界实现各种分类模型,将计算机辅助睡眠评分纳入临床实践。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dual tree complex wavelet transform for sleep state identification from single channel electroencephalogram
This work analyzes the suitability of spectral features in the Dual Tree Complex Wavelet Transform (DT-CWT) domain for EEG signal analysis by propounding a DT-CWT based feature extraction scheme. Unlike discrete wavelet transform-DT-CWT ensures limited redundancy and provides approximate shift invariance. To demonstrate the efficacy of DT-CWT for EEG signal analysis, it is applied in conjunction with spectral features to devise a feature extraction scheme for automated sleep staging from single-channel EEG. Our findings suggest that spectral features can distinguish between various sleep stages quite well. The p-values obtained by one-way analysis of variance (AN0VA) and graphical analyses also corroborate with this fact Thus, spectral features in the DT-CWT domain may be used to characterize EEG signal. Furthermore, this work can assist the sleep research community to implement various classification models to put computer-aided sleep scoring into clinical practice.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信