具有速率限制链路到中继和二进制加法器多址通道的双中继菱形网络的容量

S. S. Bidokhti, G. Kramer
{"title":"具有速率限制链路到中继和二进制加法器多址通道的双中继菱形网络的容量","authors":"S. S. Bidokhti, G. Kramer","doi":"10.1109/ISIT.2016.7541582","DOIUrl":null,"url":null,"abstract":"A class of two-relay diamond networks is studied where the broadcast component is modelled by two independent bit-pipes and the multiple-access component is memoryless. A new upper is derived on the capacity which generalizes bounding techniques of Ozarow for the Gaussian multiple description problem (1981) and Kang and Liu for the Gaussian diamond network (2011). For binary adder MACs, the upper bound establishes the capacity for all ranges of bit-pipe capacities.","PeriodicalId":198767,"journal":{"name":"2016 IEEE International Symposium on Information Theory (ISIT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Capacity of two-relay diamond networks with rate-limited links to the relays and a binary adder multiple access channel\",\"authors\":\"S. S. Bidokhti, G. Kramer\",\"doi\":\"10.1109/ISIT.2016.7541582\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A class of two-relay diamond networks is studied where the broadcast component is modelled by two independent bit-pipes and the multiple-access component is memoryless. A new upper is derived on the capacity which generalizes bounding techniques of Ozarow for the Gaussian multiple description problem (1981) and Kang and Liu for the Gaussian diamond network (2011). For binary adder MACs, the upper bound establishes the capacity for all ranges of bit-pipe capacities.\",\"PeriodicalId\":198767,\"journal\":{\"name\":\"2016 IEEE International Symposium on Information Theory (ISIT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Symposium on Information Theory (ISIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2016.7541582\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2016.7541582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

研究了一类双中继菱形网络,其中广播部分由两个独立的位管道建模,多址部分是无存储器的。对Ozarow的高斯多重描述问题(1981)和Kang和Liu的高斯菱形网络(2011)的边界技术进行了推广,导出了一种新的上限容量。对于二进制加法器mac,上界确定了所有位管容量范围的容量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Capacity of two-relay diamond networks with rate-limited links to the relays and a binary adder multiple access channel
A class of two-relay diamond networks is studied where the broadcast component is modelled by two independent bit-pipes and the multiple-access component is memoryless. A new upper is derived on the capacity which generalizes bounding techniques of Ozarow for the Gaussian multiple description problem (1981) and Kang and Liu for the Gaussian diamond network (2011). For binary adder MACs, the upper bound establishes the capacity for all ranges of bit-pipe capacities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信