BAND:孟加拉语新闻音频分类的基准数据集

Md. Rafi Ur Rashid, Mahim Mahbub, Muhammad Abdullah Adnan
{"title":"BAND:孟加拉语新闻音频分类的基准数据集","authors":"Md. Rafi Ur Rashid, Mahim Mahbub, Muhammad Abdullah Adnan","doi":"10.1145/3469877.3490575","DOIUrl":null,"url":null,"abstract":"Despite being the sixth most widely spoken language in the world, Bangla has barely received any attention in the domain of audio-visual news classification. In this work, we collect, annotate, and prepare a comprehensive news audio dataset in Bangla, comprising 5120 news clips, with around 820 hours of total duration. We also conduct practical experiments to obtain a human baseline for the news audio classification task. Later, we implement one of the human approaches by performing news classification directly on the audio features using various state-of-the-art classifiers and a few transfer learning models. To the best of our knowledge, this is the very first work developing a benchmark dataset for news audio classification in Bangla.","PeriodicalId":210974,"journal":{"name":"ACM Multimedia Asia","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"BAND: A Benchmark Dataset forBangla News Audio Classification\",\"authors\":\"Md. Rafi Ur Rashid, Mahim Mahbub, Muhammad Abdullah Adnan\",\"doi\":\"10.1145/3469877.3490575\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite being the sixth most widely spoken language in the world, Bangla has barely received any attention in the domain of audio-visual news classification. In this work, we collect, annotate, and prepare a comprehensive news audio dataset in Bangla, comprising 5120 news clips, with around 820 hours of total duration. We also conduct practical experiments to obtain a human baseline for the news audio classification task. Later, we implement one of the human approaches by performing news classification directly on the audio features using various state-of-the-art classifiers and a few transfer learning models. To the best of our knowledge, this is the very first work developing a benchmark dataset for news audio classification in Bangla.\",\"PeriodicalId\":210974,\"journal\":{\"name\":\"ACM Multimedia Asia\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Multimedia Asia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3469877.3490575\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Multimedia Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3469877.3490575","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

尽管孟加拉语是世界上第六大最广泛使用的语言,但它在视听新闻分类领域几乎没有受到任何关注。在这项工作中,我们收集、注释并准备了一个全面的孟加拉国新闻音频数据集,其中包括5120个新闻片段,总时长约为820小时。我们还进行了实际实验,以获得新闻音频分类任务的人类基线。稍后,我们通过使用各种最先进的分类器和一些迁移学习模型直接对音频特征执行新闻分类来实现一种人类方法。据我们所知,这是第一个为孟加拉国的新闻音频分类开发基准数据集的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
BAND: A Benchmark Dataset forBangla News Audio Classification
Despite being the sixth most widely spoken language in the world, Bangla has barely received any attention in the domain of audio-visual news classification. In this work, we collect, annotate, and prepare a comprehensive news audio dataset in Bangla, comprising 5120 news clips, with around 820 hours of total duration. We also conduct practical experiments to obtain a human baseline for the news audio classification task. Later, we implement one of the human approaches by performing news classification directly on the audio features using various state-of-the-art classifiers and a few transfer learning models. To the best of our knowledge, this is the very first work developing a benchmark dataset for news audio classification in Bangla.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信