基于多项式展开的距离图像分割与环境分类

Brian Okorn, Josh Harguess
{"title":"基于多项式展开的距离图像分割与环境分类","authors":"Brian Okorn, Josh Harguess","doi":"10.1109/PLANS.2014.6851460","DOIUrl":null,"url":null,"abstract":"In this paper we introduce a method that utilizes a high-order polynomial expansion of range imagery for the purposes of image segmentation and classification. The use of polynomial expansion has been quite successful in segmenting and estimating optical flow in 2D imagery, but has not been used extensively in 3D or range imagery. We derive features using the coefficients of the high-order polynomial expansion and use those features for local and global segmentation of the range image. Finally, we classify the segments based on the features within each segment. Promising results are shown on range images from the Odetic lidar database.","PeriodicalId":371808,"journal":{"name":"2014 IEEE/ION Position, Location and Navigation Symposium - PLANS 2014","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polynomial expansion for range image segmentation and classification of the environment\",\"authors\":\"Brian Okorn, Josh Harguess\",\"doi\":\"10.1109/PLANS.2014.6851460\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we introduce a method that utilizes a high-order polynomial expansion of range imagery for the purposes of image segmentation and classification. The use of polynomial expansion has been quite successful in segmenting and estimating optical flow in 2D imagery, but has not been used extensively in 3D or range imagery. We derive features using the coefficients of the high-order polynomial expansion and use those features for local and global segmentation of the range image. Finally, we classify the segments based on the features within each segment. Promising results are shown on range images from the Odetic lidar database.\",\"PeriodicalId\":371808,\"journal\":{\"name\":\"2014 IEEE/ION Position, Location and Navigation Symposium - PLANS 2014\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE/ION Position, Location and Navigation Symposium - PLANS 2014\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PLANS.2014.6851460\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE/ION Position, Location and Navigation Symposium - PLANS 2014","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PLANS.2014.6851460","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种利用距离图像的高阶多项式展开进行图像分割和分类的方法。多项式展开在二维图像的光流分割和估计中已经取得了相当大的成功,但在三维图像和距离图像中还没有得到广泛应用。我们利用高阶多项式展开的系数导出特征,并利用这些特征对距离图像进行局部和全局分割。最后,我们根据每个片段内的特征对片段进行分类。Odetic激光雷达数据库的距离图像显示了有希望的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Polynomial expansion for range image segmentation and classification of the environment
In this paper we introduce a method that utilizes a high-order polynomial expansion of range imagery for the purposes of image segmentation and classification. The use of polynomial expansion has been quite successful in segmenting and estimating optical flow in 2D imagery, but has not been used extensively in 3D or range imagery. We derive features using the coefficients of the high-order polynomial expansion and use those features for local and global segmentation of the range image. Finally, we classify the segments based on the features within each segment. Promising results are shown on range images from the Odetic lidar database.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信