基于SMOTE的改进集成学习方法在蛋白质相互作用热点预测中的应用

Qianqian Huang, Xiaolong Zhang
{"title":"基于SMOTE的改进集成学习方法在蛋白质相互作用热点预测中的应用","authors":"Qianqian Huang, Xiaolong Zhang","doi":"10.1109/BIBM.2016.7822756","DOIUrl":null,"url":null,"abstract":"In the protein-protein interactions, only a small subset of hot spot residues contributes significantly to the binding free energy. Therefore, there is an imbalance between the number of hot spots and non-hot spots. The prediction of hot spot residues is very important in the protein-protein interaction. This paper presents an improved ensemble learning method-Adaboost with SMOTE method to deal with the imbalanced data and predict protein hot spots in the latest database SKEMPI. Firstly, the amino acid information such as hydrophobicity of the amino acid and protein structural features is exacted. Then mRMR algorithm was used to select the features. Finally, the protein database is further handled by SMOTE to deal with the imbalance data, the protein hot spots are predicted by the ensemble learning method-Adaboost. Experimental results show that the proposed method has the ability to improve the predict accuracy.","PeriodicalId":345384,"journal":{"name":"2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"An improved ensemble learning method with SMOTE for protein interaction hot spots prediction\",\"authors\":\"Qianqian Huang, Xiaolong Zhang\",\"doi\":\"10.1109/BIBM.2016.7822756\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the protein-protein interactions, only a small subset of hot spot residues contributes significantly to the binding free energy. Therefore, there is an imbalance between the number of hot spots and non-hot spots. The prediction of hot spot residues is very important in the protein-protein interaction. This paper presents an improved ensemble learning method-Adaboost with SMOTE method to deal with the imbalanced data and predict protein hot spots in the latest database SKEMPI. Firstly, the amino acid information such as hydrophobicity of the amino acid and protein structural features is exacted. Then mRMR algorithm was used to select the features. Finally, the protein database is further handled by SMOTE to deal with the imbalance data, the protein hot spots are predicted by the ensemble learning method-Adaboost. Experimental results show that the proposed method has the ability to improve the predict accuracy.\",\"PeriodicalId\":345384,\"journal\":{\"name\":\"2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBM.2016.7822756\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2016.7822756","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

在蛋白质-蛋白质相互作用中,只有一小部分热点残基对结合自由能有显著贡献。因此,热点和非热点的数量是不平衡的。热点残基的预测在蛋白质相互作用中具有十分重要的意义。本文提出了一种改进的集成学习方法adaboost与SMOTE相结合的方法来处理最新数据库SKEMPI中的不平衡数据并预测蛋白质热点。首先,提取氨基酸的疏水性、蛋白质的结构特征等氨基酸信息;然后利用mRMR算法对特征进行选择。最后,利用SMOTE对蛋白质数据库进行进一步处理,对不平衡数据进行处理,利用集成学习方法adaboost对蛋白质热点进行预测。实验结果表明,该方法具有提高预测精度的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An improved ensemble learning method with SMOTE for protein interaction hot spots prediction
In the protein-protein interactions, only a small subset of hot spot residues contributes significantly to the binding free energy. Therefore, there is an imbalance between the number of hot spots and non-hot spots. The prediction of hot spot residues is very important in the protein-protein interaction. This paper presents an improved ensemble learning method-Adaboost with SMOTE method to deal with the imbalanced data and predict protein hot spots in the latest database SKEMPI. Firstly, the amino acid information such as hydrophobicity of the amino acid and protein structural features is exacted. Then mRMR algorithm was used to select the features. Finally, the protein database is further handled by SMOTE to deal with the imbalance data, the protein hot spots are predicted by the ensemble learning method-Adaboost. Experimental results show that the proposed method has the ability to improve the predict accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信