{"title":"用于心律失常检测的个性化通用心电图心跳分类:一种深度学习方法","authors":"Meng-Hsi Wu, Emily Chang, Tzu-Hsuan Chu","doi":"10.1109/MIPR.2018.00024","DOIUrl":null,"url":null,"abstract":"We propose an end-to-end model for generic and personalized ECG arrhythmic heartbeat detection on ECG data from both wearable and non-wearable devices. We first develop a deep learning based model to address the challenging problem caused by inter-patient differences in ECG signal patterns. This model achieves the state-of-the-art performance for ECG heartbeat arrhythmia detection on the commonly used benchmark dataset from the MIT-BIH Arrhythmia Database. We then utilize our model in an active learning process to perform patient-adaptive heartbeat classification tasks on the non-wearable ECG dataset from the MIT-BIH Arrhythmia Database and the wearable ECG dataset from the DeepQ Arrhythmia Database. Results show that our personalization model requires a query of less than 5% of data from each new patient, significantly improves the precision of disease detection from the generic model on each new subject, and reaches nearly 100% accuracy in normal and VEB beat predictions on both databases.","PeriodicalId":320000,"journal":{"name":"2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Personalizing a Generic ECG Heartbeat Classification for Arrhythmia Detection: A Deep Learning Approach\",\"authors\":\"Meng-Hsi Wu, Emily Chang, Tzu-Hsuan Chu\",\"doi\":\"10.1109/MIPR.2018.00024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose an end-to-end model for generic and personalized ECG arrhythmic heartbeat detection on ECG data from both wearable and non-wearable devices. We first develop a deep learning based model to address the challenging problem caused by inter-patient differences in ECG signal patterns. This model achieves the state-of-the-art performance for ECG heartbeat arrhythmia detection on the commonly used benchmark dataset from the MIT-BIH Arrhythmia Database. We then utilize our model in an active learning process to perform patient-adaptive heartbeat classification tasks on the non-wearable ECG dataset from the MIT-BIH Arrhythmia Database and the wearable ECG dataset from the DeepQ Arrhythmia Database. Results show that our personalization model requires a query of less than 5% of data from each new patient, significantly improves the precision of disease detection from the generic model on each new subject, and reaches nearly 100% accuracy in normal and VEB beat predictions on both databases.\",\"PeriodicalId\":320000,\"journal\":{\"name\":\"2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MIPR.2018.00024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MIPR.2018.00024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Personalizing a Generic ECG Heartbeat Classification for Arrhythmia Detection: A Deep Learning Approach
We propose an end-to-end model for generic and personalized ECG arrhythmic heartbeat detection on ECG data from both wearable and non-wearable devices. We first develop a deep learning based model to address the challenging problem caused by inter-patient differences in ECG signal patterns. This model achieves the state-of-the-art performance for ECG heartbeat arrhythmia detection on the commonly used benchmark dataset from the MIT-BIH Arrhythmia Database. We then utilize our model in an active learning process to perform patient-adaptive heartbeat classification tasks on the non-wearable ECG dataset from the MIT-BIH Arrhythmia Database and the wearable ECG dataset from the DeepQ Arrhythmia Database. Results show that our personalization model requires a query of less than 5% of data from each new patient, significantly improves the precision of disease detection from the generic model on each new subject, and reaches nearly 100% accuracy in normal and VEB beat predictions on both databases.