基于L-GEM的特征加权

Qian-Cheng Wang, Wing W. Y. Ng, P. Chan, D. Yeung
{"title":"基于L-GEM的特征加权","authors":"Qian-Cheng Wang, Wing W. Y. Ng, P. Chan, D. Yeung","doi":"10.1109/ICMLC.2010.5581062","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel method to weight features for their relevance to the given classification problem. The weight of a feature is computed by its Localized Generalization Error model (L-GEM). Then, a Radial Basis Function Neural Network (RBFNN) is trained by those weighted features. Experimental results on image classification problem show that the proposed method is efficient and effective in comparison to current methods.","PeriodicalId":126080,"journal":{"name":"2010 International Conference on Machine Learning and Cybernetics","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Feature weighting based on L-GEM\",\"authors\":\"Qian-Cheng Wang, Wing W. Y. Ng, P. Chan, D. Yeung\",\"doi\":\"10.1109/ICMLC.2010.5581062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a novel method to weight features for their relevance to the given classification problem. The weight of a feature is computed by its Localized Generalization Error model (L-GEM). Then, a Radial Basis Function Neural Network (RBFNN) is trained by those weighted features. Experimental results on image classification problem show that the proposed method is efficient and effective in comparison to current methods.\",\"PeriodicalId\":126080,\"journal\":{\"name\":\"2010 International Conference on Machine Learning and Cybernetics\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Machine Learning and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLC.2010.5581062\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Machine Learning and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2010.5581062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在本文中,我们提出了一种新的方法来加权特征与给定分类问题的相关性。根据特征的局部泛化误差模型(L-GEM)计算特征的权重。然后,利用这些加权特征训练径向基函数神经网络(RBFNN)。在图像分类问题上的实验结果表明,与现有方法相比,该方法是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feature weighting based on L-GEM
In this paper, we propose a novel method to weight features for their relevance to the given classification problem. The weight of a feature is computed by its Localized Generalization Error model (L-GEM). Then, a Radial Basis Function Neural Network (RBFNN) is trained by those weighted features. Experimental results on image classification problem show that the proposed method is efficient and effective in comparison to current methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信