使用QualNet模拟器和STLSTM探索5G网络中基于机器学习的流量预测

R. Rathna, D. Vinod
{"title":"使用QualNet模拟器和STLSTM探索5G网络中基于机器学习的流量预测","authors":"R. Rathna, D. Vinod","doi":"10.26634/jmt.9.2.19317","DOIUrl":null,"url":null,"abstract":"This paper aims to explore Machine Learning-based traffic prediction in 5G networks using the QualNet simulator and the Spatio-Temporal Long Short-Term Memory (STLSTM) model. The study evaluated the performance of the STLSTM model by comparing it with other models such as Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), and Convolutional Neural Network (CNN). The evaluation metrics used for the simulation experiments included Packet Delivery Ratio (PDR), throughput, end-to-end delay, and jitter. The results showed that the STLSTM model outperformed the other models in terms of Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and R-squared, and achieved improved accuracy in predicting traffic in 5G networks. The findings of this study can help network operators to effectively manage traffic and optimize network performance.","PeriodicalId":443344,"journal":{"name":"i-manager's Journal on Mobile Applications and Technologies","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring machine learning-based traffic prediction in 5G networks using a QualNet simulator and STLSTM\",\"authors\":\"R. Rathna, D. Vinod\",\"doi\":\"10.26634/jmt.9.2.19317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper aims to explore Machine Learning-based traffic prediction in 5G networks using the QualNet simulator and the Spatio-Temporal Long Short-Term Memory (STLSTM) model. The study evaluated the performance of the STLSTM model by comparing it with other models such as Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), and Convolutional Neural Network (CNN). The evaluation metrics used for the simulation experiments included Packet Delivery Ratio (PDR), throughput, end-to-end delay, and jitter. The results showed that the STLSTM model outperformed the other models in terms of Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and R-squared, and achieved improved accuracy in predicting traffic in 5G networks. The findings of this study can help network operators to effectively manage traffic and optimize network performance.\",\"PeriodicalId\":443344,\"journal\":{\"name\":\"i-manager's Journal on Mobile Applications and Technologies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"i-manager's Journal on Mobile Applications and Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26634/jmt.9.2.19317\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"i-manager's Journal on Mobile Applications and Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26634/jmt.9.2.19317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在利用QualNet模拟器和时空长短期记忆(STLSTM)模型探索5G网络中基于机器学习的流量预测。本研究通过与长短期记忆(LSTM)、门控循环单元(GRU)和卷积神经网络(CNN)等其他模型进行比较,评估了STLSTM模型的性能。用于仿真实验的评估指标包括包投递率(PDR)、吞吐量、端到端延迟和抖动。结果表明,STLSTM模型在均方根误差(RMSE)、平均绝对误差(MAE)和r平方方面优于其他模型,在预测5G网络流量方面取得了更高的准确性。本研究结果可协助网路营运商有效管理流量及优化网路效能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring machine learning-based traffic prediction in 5G networks using a QualNet simulator and STLSTM
This paper aims to explore Machine Learning-based traffic prediction in 5G networks using the QualNet simulator and the Spatio-Temporal Long Short-Term Memory (STLSTM) model. The study evaluated the performance of the STLSTM model by comparing it with other models such as Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), and Convolutional Neural Network (CNN). The evaluation metrics used for the simulation experiments included Packet Delivery Ratio (PDR), throughput, end-to-end delay, and jitter. The results showed that the STLSTM model outperformed the other models in terms of Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and R-squared, and achieved improved accuracy in predicting traffic in 5G networks. The findings of this study can help network operators to effectively manage traffic and optimize network performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信