基于部分信息和深度学习的最大递减约束下的离散时间投资组合优化

C. Franco, Johann Nicolle, H. Pham
{"title":"基于部分信息和深度学习的最大递减约束下的离散时间投资组合优化","authors":"C. Franco, Johann Nicolle, H. Pham","doi":"10.13140/RG.2.2.21502.61766","DOIUrl":null,"url":null,"abstract":"We study a discrete-time portfolio selection problem with partial information and maxi\\-mum drawdown constraint. Drift uncertainty in the multidimensional framework is modeled by a prior probability distribution. In this Bayesian framework, we derive the dynamic programming equation using an appropriate change of measure, and obtain semi-explicit results in the Gaussian case. The latter case, with a CRRA utility function is completely solved numerically using recent deep learning techniques for stochastic optimal control problems. We emphasize the informative value of the learning strategy versus the non-learning one by providing empirical performance and sensitivity analysis with respect to the uncertainty of the drift. Furthermore, we show numerical evidence of the close relationship between the non-learning strategy and a no short-sale constrained Merton problem, by illustrating the convergence of the former towards the latter as the maximum drawdown constraint vanishes.","PeriodicalId":286833,"journal":{"name":"arXiv: Portfolio Management","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Discrete-time portfolio optimization under maximum drawdown constraint with partial information and deep learning resolution\",\"authors\":\"C. Franco, Johann Nicolle, H. Pham\",\"doi\":\"10.13140/RG.2.2.21502.61766\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study a discrete-time portfolio selection problem with partial information and maxi\\\\-mum drawdown constraint. Drift uncertainty in the multidimensional framework is modeled by a prior probability distribution. In this Bayesian framework, we derive the dynamic programming equation using an appropriate change of measure, and obtain semi-explicit results in the Gaussian case. The latter case, with a CRRA utility function is completely solved numerically using recent deep learning techniques for stochastic optimal control problems. We emphasize the informative value of the learning strategy versus the non-learning one by providing empirical performance and sensitivity analysis with respect to the uncertainty of the drift. Furthermore, we show numerical evidence of the close relationship between the non-learning strategy and a no short-sale constrained Merton problem, by illustrating the convergence of the former towards the latter as the maximum drawdown constraint vanishes.\",\"PeriodicalId\":286833,\"journal\":{\"name\":\"arXiv: Portfolio Management\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Portfolio Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13140/RG.2.2.21502.61766\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Portfolio Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13140/RG.2.2.21502.61766","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究了具有部分信息和最大-最小回撤约束的离散时间投资组合问题。多维框架中的漂移不确定性用先验概率分布来建模。在此贝叶斯框架下,我们利用适当的测度变换导出了动态规划方程,并在高斯情况下得到了半显式结果。后一种情况下,使用CRRA效用函数,使用最近的深度学习技术对随机最优控制问题进行数值解决。我们通过提供关于漂移不确定性的经验性能和敏感性分析,强调学习策略与非学习策略的信息价值。此外,我们通过说明当最大收缩约束消失时,前者向后者收敛,给出了非学习策略与无卖空约束Merton问题之间密切关系的数值证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discrete-time portfolio optimization under maximum drawdown constraint with partial information and deep learning resolution
We study a discrete-time portfolio selection problem with partial information and maxi\-mum drawdown constraint. Drift uncertainty in the multidimensional framework is modeled by a prior probability distribution. In this Bayesian framework, we derive the dynamic programming equation using an appropriate change of measure, and obtain semi-explicit results in the Gaussian case. The latter case, with a CRRA utility function is completely solved numerically using recent deep learning techniques for stochastic optimal control problems. We emphasize the informative value of the learning strategy versus the non-learning one by providing empirical performance and sensitivity analysis with respect to the uncertainty of the drift. Furthermore, we show numerical evidence of the close relationship between the non-learning strategy and a no short-sale constrained Merton problem, by illustrating the convergence of the former towards the latter as the maximum drawdown constraint vanishes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信