时间约束组合优化中子问题生成的多标签分类

Luca Mossina, E. Rachelson, D. Delahaye
{"title":"时间约束组合优化中子问题生成的多标签分类","authors":"Luca Mossina, E. Rachelson, D. Delahaye","doi":"10.5220/0007396601330141","DOIUrl":null,"url":null,"abstract":"his paper addresses the resolution of combinatorial optimization problems presenting some kind of recurrent structure, coupled with machine learning techniques. Stemming from the assumption that such recurrent problems are the realization of an unknown generative probabilistic model, data is collected from previous resolutions of such problems and used to train a supervised learning model for multi-label classification. This model is exploited to predict a subset of decision variables to be set heuristically to a certain reference value, thus becoming fixed parameters in the original problem. The remaining variables then form a smaller sub-problem whose solution, while not guaranteed to be optimal for the original problem, can be obtained faster, offering an advantageous tool for tackling time-sensitive tasks.","PeriodicalId":235376,"journal":{"name":"International Conference on Operations Research and Enterprise Systems","volume":"141 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Multi-label Classification for the Generation of Sub-problems in Time-constrained Combinatorial Optimization\",\"authors\":\"Luca Mossina, E. Rachelson, D. Delahaye\",\"doi\":\"10.5220/0007396601330141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"his paper addresses the resolution of combinatorial optimization problems presenting some kind of recurrent structure, coupled with machine learning techniques. Stemming from the assumption that such recurrent problems are the realization of an unknown generative probabilistic model, data is collected from previous resolutions of such problems and used to train a supervised learning model for multi-label classification. This model is exploited to predict a subset of decision variables to be set heuristically to a certain reference value, thus becoming fixed parameters in the original problem. The remaining variables then form a smaller sub-problem whose solution, while not guaranteed to be optimal for the original problem, can be obtained faster, offering an advantageous tool for tackling time-sensitive tasks.\",\"PeriodicalId\":235376,\"journal\":{\"name\":\"International Conference on Operations Research and Enterprise Systems\",\"volume\":\"141 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Operations Research and Enterprise Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0007396601330141\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Operations Research and Enterprise Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0007396601330141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

他的论文结合机器学习技术,解决了呈现某种循环结构的组合优化问题。基于这类反复出现的问题是未知生成概率模型的实现这一假设,我们从这类问题之前的解决方案中收集数据,并用于训练用于多标签分类的监督学习模型。该模型用于预测一组决策变量的子集,将其启发式地设置为某个参考值,从而成为原问题中的固定参数。然后,剩下的变量形成一个较小的子问题,其解虽然不能保证对原始问题是最优的,但可以更快地获得,为处理时间敏感的任务提供了一个有利的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-label Classification for the Generation of Sub-problems in Time-constrained Combinatorial Optimization
his paper addresses the resolution of combinatorial optimization problems presenting some kind of recurrent structure, coupled with machine learning techniques. Stemming from the assumption that such recurrent problems are the realization of an unknown generative probabilistic model, data is collected from previous resolutions of such problems and used to train a supervised learning model for multi-label classification. This model is exploited to predict a subset of decision variables to be set heuristically to a certain reference value, thus becoming fixed parameters in the original problem. The remaining variables then form a smaller sub-problem whose solution, while not guaranteed to be optimal for the original problem, can be obtained faster, offering an advantageous tool for tackling time-sensitive tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信